Baluns & Common Mode Chokes

Bill Leonard NOCU 5 August 2017

Topics – Part 1

- A Radio Frequency Interference (RFI) Problem
- Some Basic Terms & Theory
- Baluns & Chokes
 - What is a Balun
 - Types of Baluns
 - Balun Applications
 - Design & Performance Issues
 - Voltage Balun
 - Current Balun
 - What is a Common Mode Choke
 - How a Balun/Choke works

Topics – Part 2

- Tripole
- Risk of Installing a Balun
- How to Reduce Common Mode currents
- How to Build Current Baluns & Chokes
 - Transmission Line Transformers (TLT)
 - Examples of Current Chokes
 - Ferrite & Powdered Iron (Iron Powder) Suppliers

Part 1

RFI Problem

• Problem:

- Audio started coming thru speakers of audio amp:
 - When transmitting > 50W SSB
 - 20M & 40m (I didn't check any other bands)
- No other electronics affected
- Never had this problem before
- Problem would come and go for no apparent reason

RFI Problem – cont'd

- Observations
 - Intermittent: problem was freq dependent
 - RF Power level dependent
 - Rotating the 20 M beam appeared to have no effect
 - No RFI with dummy load
 - AC line filter had no effect
 - Common Mode Choke on transmission line to house had no effect
 - Caps (180 pF) on speaker terminals on audio amp made problem worse
 - Caution: don't use large caps (ie., 0.01 uF) with solid state amps => damage
 - Disconnecting 4 of 5 speakers from the audio amp eliminated problem
 - The two speakers with the longest cables were picking up RF
 - Both of these speakers needed to be connected to the amp to have the problem
 - Length of cable to each speaker ~30 ft (~1/4 wavelength on 40M)
 - None of the other three speakers contributed to the problem

RFI Problem – cont'd

Conclusions:

- RF is getting into the audio amp via two speaker cables
 - The SSB modulation is being rectified and amplified in the audio amp
 - This is well documented as a common cause of RFI
- Problem does not appear to be RF on AC power line

• Solution:

- Two snap on ferrites on each of the two speakers leads solved problem
 - Properties of the ferrite unknown

RFI Problem – cont'd

- Remaining Questions:
 - What has changed (20+ years with no RFI problems)
 - What caused the frequency dependence
 - Why were two speakers needed to cause the problem
 - Is Common Mode Current still a possible problem
 - Transmission line
 - AC power line
 - Is my solution a true fix or only a band-aid

Questions to be Addressed

- When should a balun/choke be used
- What type of balun/choke should be used
 - How to build a balun/choke
- Where should they be installed
- What should be observed after one is installed

Questions to be Addressed

- When should a balun/choke be used
- What type of balun/choke should be used
 - How to build a balun/choke
- Where should they be installed
- What should be observed after one is installed.

The answers to all of these questions are application dependent!

Some Basic Terms & Theory

Signal Line Types

Most antennas are neither perfectly balanced, nor perfectly unbalanced

- Unbalanced Line:
 - Single wire working against ground or a shield
 - Wire may, or may not, be shielded
 - Coax is a shielded unbalanced line
 - If unshielded, the wire will radiate
- Balanced Line:
 - Two collocated lines working against each other
 - Signal wires usually not shielded
 - Twin lead & ladder line are balanced lines.
 - Ground is not part of the signal path
 - No radiation if signals on the line are also balanced

Balanced Signal

- Balanced signals have **both**:
 - Equal amplitude currents that are 180° out of phase
 - Equal amplitude voltages that are 180° out of phase
- Balanced RF signals on a balanced line => ~no radiation
 - No radiation is unachievable
 - Requires <u>perfect cancellation</u> (theoretically impossible to achieve)
 - Wire line spacing < 1/10 wavelength is usually adequate for ham applications

Example: two wire transmission line

Signal Transmission Modes

- Two types of signal transmission modes
 - Differential (Transmission Line) Mode:
 - Signals are balanced
 - Net line current = Common Mode Current = 0
 - Radiation won't occur

- Common Mode:
 - Signals are <u>un</u>balanced
 - Net line current = Common Mode Current = I_{CM}
 - Radiation will occur

Common Mode Current

- Can cause <u>significant</u> operational problems
- Not always an issue that requires mitigation
 - If no Common Mode Current, installing a Balun/Choke will have no effect
- What can cause Common Mode Currents:
 - 1. Imbalanced line currents
 - Asymmetry in the antenna
 - Off center fed dipole
 - Sloping dipole
 - Dipole with elements going in different directions
 - Feedline not perpendicular to the antenna
 - Objects in the near field of the antenna
 - A Balun/Choke won't help with some of these problems
 - 2. Ground loops
 - Balanced to Unbalanced mismatch (Tripole)

Common Mode Current Example

• Coaxial transmission line:

Source can be either noise or an RF signal

Problems Common Mode Currents Can Cause

- Distortion in antenna pattern and polarization
 - Reduce peak gain
 - Interference from unwanted signals
 - Increase noise
- Antenna SWR problems
 - Increase SWR
 - Shift the frequency of minimum SWR (resonance)
 - False readings on wattmeters and SWR bridges
 - Make SWR dependent on the length of coax
- RFI
 - Burning fingers/lips
 - Interference with consumer electronics (spouse + neighbors)
 - Trip transceiver and/or amplifier protection circuits
 - Distortion on audio (mics, speakers, etc)

Measured Performance

Without Balun

With Balun

Half wave dipole QST April 1980

Some ARRL Antenna Books are misleading

Baluns & Chokes (Overview)

What is a Balun

- Bidirectional signal conversion device
 - Converts a BALanced signal to an UNbalanced signal, and vice versa
 - Outputs either equal **CURRENT** or equal **VOLTAGE** from each balanced port
 - Even with varying load impedances
 - A Balun may, or may not, reduce Common Mode Currents
- A Balun can be designed to do impedance transformations
 - The descriptor **n:1** defines **impedance** ratio
 - Common ratios: 1:1, 2:1, 4:1, 6:1, 9:1, 12:1
 - Note: 1:n is *not* the same as an n:1 (ie, 50:200 vs 50:12.5)
- 3 port power divider defined by:
 - S12 = S21 = -S13 = -S31
 - S11 = Infinity
 - S23 & S32 (port to port balance): no constraint

Types of Baluns

Voltage Balun

• Not the best choice for most ham applications

Current Balun

Current Choke

- A Current Balun that is designed to reduce Common Mode currents
- AKA: Choke Balun, Common Mode Choke, Line Isolator, Feedline Current Isolator
- Good Current Balun ⇔ Good Common Mode Choke

• Unun

- "UNbalanced to UNbalanced" signal conversion device
- Used with ground mounted verticals and to break up ground loops

• Babal (my name)

- "Balanced to Balanced" signal conversion device => ???
- ARRL Antenna book gives an example of this type of device

Balun Applications

- Signal conversion
- Impedance transformation (up or down)
- Isolation of circuits (ie, reduce Common Mode Currents)
 - Reduce/eliminate RFI
 - Improve antenna patterns and match
 - Eliminate ground loops
 - Both audio and RF
- Delay line with Common Mode Current rejection
- Phase inverter with Common Mode Current rejection

Unless stated otherwise, comments apply to Current Baluns/Chokes

Typical Balun Performance Specs

- Frequency Coverage*
- System Impedance*
- Impedance Transformation Ratio*
- Maximum Power*1
- Return Loss (SWR)*
- Insertion Loss*
- Common Mode Rejection Ratio (CMRR)
 - Choke "Impedance" is better spec for ham applications*
 - Both R & X are important
- Phase Balance
- Amplitude Balance
- Balanced Port Isolation
- DC/Ground Isolation
- Group Delay Flatness

- 1) Two problems with max power specs
 - Duty cycle is not spec'd
 - The <u>important</u> power limit:
 - Not spec'd
 - Can be much lower than spec'd limit

Usually Spec'd

Frequently

Not

Spec'd

Design And Performance Issues

- Too many "Experts" who either don't discuss, or don't agree on:
 - Important performance requirements
 - Which Balun/Choke designs should be used?
 - Important "System" issues
 - Will adding a Balun/Choke help or hurt?
 - Will the Balun/Choke overheat?
- Most manufacturers:
 - Don't provide specs for some critical parameters
 - Example: one popular manufacture's specs:
 - Balun: 1:1 ratio, 1.8-30 MHz, 50 ohms, 2 KW/5 KW
 - Common Mode power limit is the most important, but is never spec'd
 - Not sure how it could be spec'd, or how meaningful it would be if it was published
 - It is possible for a 100 watt transmitter to destroy a 2 KW Balun!
 - Don't offer much/any info on "System" issues

Design And Performance Issues

- Too many "Experts" who either don't discuss, or don't agree on:
 - Important performance requirements
 - Which Balun/Choke designs should be used?
 - Important "System" issues

How a Balun/Choke performs, and whether it will survive, is <u>application dependent!</u>

- Don't provide specs for some critical parameters
 - Example: one popular manufacture's specs:
 - Balun: 1:1 ratio, 1.8-30 MHz, 50 ohms, 2 KW/5 KW
 - Common Mode power limit is the most important, but is never spec'd
 - Not sure how it could be spec'd, or how meaningful it would be if it was published
 - It is possible for a 100 watt transmitter to destroy a 2 KW Balun!
- Don't offer much/any info on "System" issues

Important System Issues

- "System" includes:
 - Load (antenna, etc)
 - Baluns & Chokes
 - Transmission line
 - Antenna tuners
 - Station RF ground (both impedance and location are important)
- What is the risk of a Balun/Choke failing due to overheating
- Balun/Choke performance vs. load impedance
 - Manufacturer's specs assume a 50 ohm resistive load
 - Some baluns/chokes are very sensitive to reactance

Voltage Balun

Voltage Balun

- Produces equal & opposite voltages at output ports
 - Used with voltage fed antennas (end fed half wave, long wire, etc)
- Currents are whatever is needed to generate equal output voltages
- Requires magnetic coupling for Differential Mode signals
 - Ferrite and powder iron materials commonly used
 - Core can be toroid, rod, binocular style
- Hams started using the voltage Balun in the mid '60s
 - Not the best choice for most Ham applications
 - Equal currents (not voltages) are usually required in Ham applications
 - More likely to fail due to heating of magnetics
 - Affected more by load impedance variations
 - Most commercial antenna tuners use a 4:1 voltage balun

Examples: Voltage Baluns & Ununs

Current Balun

Current Balun

- Produces equal & opposite currents at output ports
- Voltages are whatever is needed to generate equal output currents
- A 1:1 Current Balun is also a Common Mode Choke
 - Exhibits high impedance to common mode signals
 - Little/no degradation of differential signals
- Magnetic coupling not required for <u>Differential Mode</u> signals => less loss/heating
- Best choice for most ham applications
 - Equal currents are required in most ham applications
 - Provides:
 - Better input to output isolation
 - Better power handling capability
 - Better output balance
 - Better tolerance to load variations
 - Lower loss

Examples: Current Baluns

1:1 Balun/Common Mode Choke

4:1 Balun

200 ohm BALANCED

Common Mode Choke

What Is A Common Mode Choke

- Signal conversion/isolation device designed to provide:
 - Maximum Common Mode Current rejection
 - Minimum Differential (Transmission Line) Mode loss
- Can be built using:
 - Powder iron core coupling:
 - Low permeability: low loss, low inductance/turn, high Q, narrow bandwidth
 - Ferrite core coupling:
 - High permeability: high loss, high inductance/turn, low Q, wide bandwidth
 - Air coupling
 - Permeability = 1: low loss, low inductance/turn, very high Q, very narrow bandwidth
 - No coupling (coaxial half wave balun)
 - Low loss, very high Q, very narrow bandwidth

How A Common Mode Choke Works

<u>Differential Mode</u> Chokes

Individual Chokes yield High Z_{CM} and High Z_D

Common Mode Choke

Toroidal Chokes to reduce:

How A Balun/Common Mode Choke Works – cont'd

Common-Mode Chokes

Magnetic flux caused by common mode current adds up, producing an opposing impedance.

Impedance of a Balun/Choke

- Common Mode signal sees a choke
 - Z_{CHOKE} varies with
 - Frequency
 - Type of balun & design
- Differential signal only sees a transmission line
 - Z_{Diff} ~ 0
- Impedance can be:
 - Resistive and reactive
 - Mostly resistive
 - Mostly reactive
 - Inductive below self resonant frequency (SRF)
 - Capacitive above SRF

Self Resonance In Inductors

Equivalent circuit of a wire-wound inductor

6.8 uH **High Q** Toroid Inductor

Examples: Current Chokes

Homebrew Sleeve Choke

Mostly resistive & Low Q

Homebrew Toroidal Choke

Mostly reactive & High Q

Examples: Current Chokes

Homebrew Sleeve Choke

Mostly resistive & Low Q

Homebrew Toroidal Choke

Mostly reactive & High Q

Common Mode Choke Impedance

- Should a Common Mode Choke be mostly resistive, or mostly reactive?
 - Resistive chokes <u>dissipate</u> the Common Mode energy
 - Example: $Z_{Choke} = 100 + j0$
 - Will always decrease Common Mode Current
 - Difficult to achieve high resistances
 - Choke's core can overheat, even if it is not saturated!
 - Saturated core with low duty cycle may not overheat, but => nonlinear => distortion
 - Reactive chokes <u>reflect</u> the Common Mode energy (<u>if no System resonance</u>)
 - Example: $Z_{Choke} = 0 + j100$
 - **System** resonance can **increase** Common Mode Current
 - This choke's core is not as likely to overheat
 - Is reflected Common Mode energy radiated by the antenna?
- Which is better?
 - Must look at "System" issues to answer

Common Mode Choke Impedances (G3TXQ)

Topics – Part 2

- Tripole
- Risk of Installing a Balun
- How to Reduce Common Mode currents
- How to Build Current Baluns & Chokes
 - Transmission Line Transformers (TLT)
 - Examples of Current Chokes
 - Ferrite & Powdered Iron (Iron Powder) Suppliers