Baluns & Common Mode Chokes

Bill Leonard NOCU

2 September 2017

Part 2

Topics – Part 2

- Tripole
- Risk of Installing a Balun
- How to Reduce Common Mode currents
- How to Build Current Baluns & Chokes
 - Transmission Line Transformers (TLT)
 - Examples of Current Chokes
 - Ferrite & Powdered Iron (Iron Powder) Suppliers

Sources of Common Mode Current

- 1. Balanced to Unbalanced signal mismatch
- 2. Asymmetry in antenna system
- 3. Pickup from external RF field

Tripole

Skin Effect

- Skin effect:
 - RF currents flow near the outer surface of a conductor
 - The cause of Skin Effect is electromagnetic induction
 - Can be explained by Maxwell's equations
 - Skin depth = δ
 - The higher the frequency, the smaller the skin depth
 - Example (copper):
 - At 14 MHz skin depth = 0.7 microinch
 - Typical coax shield = 20 microinch

Differential RF Current Flow In A Coaxial Cable

Common Mode RF Current Flow In A Coaxial Cable

Balanced Dipole Fed With Balanced Line

Balanced Antenna

Dipole Fed With Coax Without Balun

Balanced Antenna

Unbalanced Source

Dipole Fed With Coax Without Balun – cont'd

Unbalanced Source

What Is a Tripole?

A coaxial cable connected directly to a half wave dipole = "Tripole"

- Due to skin effect:
 - Differential RF current:
 - Flows only:
 - On the outside of the center conductor
 - On the inside of the shield
 - Sees three conductors when it reaches the dipole
 - 1) Left dipole element
 - 2) Right dipole element
 - 3) Outside of the shield
 - Current splits into I_D & I_{CM}
- The Common Mode Impedance of the shield = Z_{CM}
 - **Z**_{CM} is a function of:
 - Frequency
 - Length of the coaxial cable
 - How the cable is terminated at the transmitter
 - Location of RF ground
 - RF characteristics of the ground

RF Impedance of a Conductor

- RF impedance of a short wire conductor is usually inductance + resistance
 - Short is < 1/10 wavelength
- RF impedance of a long wire conductor is a function of:
 - Frequency
 - Size
 - Length
 - Termination impedance.
- $1/4\lambda$ inverts Z
 - $1/4\lambda$ vertical antenna => Z = 32 ohms
- 1/2λ replicates Z
 - End fed $1/2\lambda$ antenna => Z > 2000 ohms

Circuit Models for Balun/Choke

Circuit model for Balun and Coax Shield

Simplified circuit model for Balun

$$Z_{Choke} = R_{Choke} + jX_{Choke}$$

Dipole With a Balun

Dipole With Real Balun – cont'd

Only recently has the importance of Z_{CM} been understood.

Dipole With Real Balun - cont'd

Dipole With a Balun – Two Ideal Cases

Risk of Installing a Balun

Risks of Installing a Balun

- 1. If you don't have a Common Mode Current problem, installing a Balun may create one, or make an existing one worse
 - Common Mode current problems can be hard to identify
- 2. Failure of the Balun due to overheating
- 3. Increased InterModulation Distortion (IMD) on transmit signal

Unwanted <u>System</u> Resonance

- Resonance occurs when X_{CM} cancels X_{Choke}
 - I_{CM} is limited only by R_{CM} + R_{Choke}

When:

$$X_{Choke} = -X_{CM}$$
 and $(R_{Choke} + R_{CM}) << R_{D2}$

$$= I$$

$$I_{CM} = I$$
 and
$$I_{D2} = 0$$

Unwanted <u>System</u> Resonance – cont'd

Common Mode Impedance of a Coaxial Cable Shield

- Z_{CM} is:
 - Very dependent upon:
 - Length and size of the cable
 - Location and impedance of the <u>RF</u> ground
 - Not easily measured
- EZNEC cannot model Common Mode Currents on a transmission line

To Use EZNEC To Roughly Estimate I_{CM} : Tom Thompson (W0IVJ)

- Important assumptions:
 - 1. Perfect **RF** ground
 - 2. **RF** ground at known location
 - 3. No Balun
 - 4. Source moved up to antenna feed point
 - 5. Transmission line replaced with a wire

Example of Tripole Common Mode Current: Tom Thompson (WOIVJ)

- 40 M halfwave Dipole with halfwave wire for feed line
- No Balun
- Tx power = 1500 W
- Feedline **NOT** grounded

This is a dipole!

Example of Tripole Common Mode Current - cont'd

- 40 M halfwave Dipole with halfwave wire for feed line
- No Balun
- Tx power = 1500 W
- Feedline grounded

40 meter dipole with $\sim 1/2$ wl feedline $\sim 1/2$ wl above perfect ground. Feedline IS grounded at transmitter end.

Example of Tripole Common Mode Current - cont'd

- 40 M halfwave Dipole with halfwave wire for feed line
- No Balun
- Tx power = 1500 W
- Feedline grounded

This is an inverted L antenna, not a dipole!

40 meter dipole with $\sim 1/2$ wl feedline $\sim 1/2$ wl above perfect ground. Feedline IS grounded at transmitter end.

Importance of Transmission Line Length: Tom Thompson (WOIVJ)

Importance of Transmission Line Length – cont'd

- How long should a transmission line be to minimize I_{CM}?
 - Note: length is physical length (x 0.98) to RF ground
 - No Balun:
 - Monoband antennas:
 - Use odd multiple of ¼ wavelength
 - Multiband antennas: There may be no one length that is good for all bands
 - With Balun: ???
 - Chose a length that will avoid resonance
 - Some "Experts" recommend multiple of ½ wavelength
 - This seems like the worst choice to me => Use odd multiple of ¼ wavelength

Options When Installing a Balun

- Bottom line: it can be hard to <u>predict</u> what a Balun will do in any system
 - Option 1: Install a Balun/Choke and hope it is helping and not overheating
 - Option 2: Measure Common Mode Current with and without a Balun
 - Must measure current on <u>outside</u> of coax shield (not the Differential Current)

- Making the measurement inside the shack may give erroneous reading
- Option 3: Monitor temperature rise of Balun/Choke during transmit
 - A choke may be cool because it isn't doing anything

Common Mode Currents Can Be Generated By External RF

- A Balun also reduces Common Mode current due to external RF fields
 - Some claim 1 to 5 S unit noise reduction
- Some claim that an additional Current Choke is required at the station to:
 - Reduce interference in the receiver => ??
 - No documentation found showing when this is a problem
 - Reduce Common Mode Currents caused by asymmetrical coupling to the line
 - No documentation found showing when this is a problem

Where Should Baluns/Chokes Be Placed

- Start with a Balun at the antenna
- A Common Mode Choke at the transmitter?
 - No analytical or empirical justification found
- Common Mode Chokes as "Egg Insulators" every ¼ wavelength?
 - No analytical or empirical justification found
- Use many chokes in series to increase net impedance (ie, CMMR)?
 - Point of diminishing returns
 - Example: $Z_{Choke} = 10,000 \text{ Kohm } \& Z_{CM} = 100 \text{ ohm}$

CMMR

- 1st choke => 40 dB
- 2nd choke => 46 dB
- 3rd choke => 50 dB

Overheating

- Two Sources with Transmission Line Transformers (TLTs):
 - 1. Coaxial Transmission Line loss
 - Power spec based upon open-air applications (not enclosed in a box)
 - Deformation (coiled & hot) => degraded performance => failure (high SWR or short)
 - Minimum bend radius
 - This is what balun mfg's power specs are based on

2. Core loss

- Voltage Balun: both Common Mode <u>and</u> Differential Mode currents heat the core
- Current Balun: only the Common Mode current heats the core
- Heating increases with increasing permeability (ie, core loss)
- This power limit is never spec'd by mfgs and is usually the important limitation
- Two sources of overheating:
 - From resonance with a reactive choke
 - With a resistive choke with insufficient resistance

Overheating —cont'd

- Difficult to remove heat from a small enclosed box & and from ferrites
 - No air flow
 - No heat sinking options
 - Low thermal conductivity of ferrites & powdered iron

Power Dissipation – Jack Lau W1VT

Power Dissipation – Jack Lau W1VT

Intermodulation Distortion

- Ferrites are non-linear components
 - They can generate IMD just like an overdriven amplifier
 - Hard to know when this is occurring
- Avoid operating near saturation!
 - Thermal run-away

Building Current Baluns & Chokes

Types of Common Mode Current Chokes

- Inductively Coupled Air Core Coils
 - Rarely used today
- Powdered iron
- Ferrite
- Ferrite Sleeved Coax Baluns
- Coiled Coax "Ugly" Baluns
- Transmission Line Transformer (TLT) Baluns

Design Goals for Common Mode Current Chokes

- High Common Mode impedance
 - At least 500 ohms (>5 Kohms recommended)
 - Resistive vs Reactive?
 - Resistive is better is you can get the impedance high enough (ie, no overheating)
- Low Differential Mode SWR & loss
- Adequate power limits
 - Differential Mode (easy)
 - Common Mode (difficult design problem)
- Desired frequency range
- Optimized bandwidth
 - Wideband vs. narrowband
- Optimized SRF

How Common Mode Current Chokes Work

- Differential Mode signal only sees the coax
 - Coiling the coax has no effect
 - Typical:
 - SWR < 1.1:1
 - Loss < 0.1 dB
 - Bandwidth (depends on coax)
- Common Mode signal only sees the choke
- Common Mode impedance is a function of:
 - Number of turns
 - Coil dimensions
 - Frequency
 - Core media (ferrite, air, ...)

Choke Impedance Performance Claims

- Be careful!
- Some charts of performance can be misleading

6.8 uH Choke #1

6.8 uH Choke #2

Choke Impedance Performance Claims

- Be careful
- Some Charts of performance can be misleading

Same 6.8 uH Choke

Powdered Iron

- Low permeability = u = how much inductance per turn)
 - Very low loss (ie, hi Q = narrowband)
 - Less heating of the core
 - Impedance is mostly inductive reactance
 - Very low Z/turn
- Rarely used for Baluns/Chokes
 - Commonly used for high Q inductors
- Example:
 - To get ~20 uH on T50-6 (u=8) requires ~50 turns
 - No way to get this many turns of coax around even the largest core available
 - Ferrite cores would only require 4-6 turns
 - Impedance at 10 MHz:
 - Resistance: only 45 ohms
 - Inductive reactance: 1300 ohms

Ferrites

- Wide range of permeability (u)
 - Mix:
 - "31": u=1500 "33": u=600 "43": u=800 "61": u=125 "77": u=2000
- Impedance examples (10 turns around a 2.4 inch core):

Type 61

Ferrite Sleeved Current Chokes

- Ferrite beads over coax
 - These chokes are 1:1 UNUNs
- Mostly resistive impedance
 - No system resonance risk
 - Low Q (wideband)
 - Difficult to achieve sufficient choking impedance
 - No n² multiplier as with coils
 - May need to use more than 100 beads
 - History of failures from overheating
 - "W2DU design overheats at 500W"
- Simple to build but not necessarily cheap
 - Comtek uses 100 beads (\$130)

Ferrite Sleeved Current Chokes – cont'd

- Homebrew Sleeved choke performance
 - Max Impedance < 800 ohms
 - Mostly resistive

SWR < 1.08:1

Loss < 0.05 dB

Coiled Coax "Ugly" Baluns

- Two basic types
 - Single layer
 - Bunched
 - Performance not as good as single layer
- Both types can achieve high impedance
 - Very high Q
 - Very small R and large X
 - Very narrow band
 - SRF very sensitive to build parameters
 - System resonance can be a serious problem
- Large and heavy
- Best "Bang for the Buck"

Coax Air Core Single Layer Chokes

Transmission Line Transformer (TLT) Baluns

- Most common method of building Current Baluns & Chokes
- The transmission line can be coax or bifilar (parallel) wires
 - Line impedance is important for best performance
 - Line length << ¼ wavelength
 - Chose the line based upon impedance & power reqm'ts
- Use of coax yields very low SWR & insertion loss
- Only the Common Mode Current magnetizes the ferrite core
 - Minimizes Differential signa loss & core heating
- Choking Bandwidth:
 - Lowest useable freq: set by the inductance of the coil
 - More inductance lowers bottom cutoff frequency
 - More inductance requires more turns and/or higher permeability ferrite
 - Highest useable freq: set by Self Resonant Frequency (SRF) of the coil
 - More turns lowers upper frequency cutoff

High Power Coax Chokes

• For high power applications

Parallel Wire Transmission Line Impedance

- Optimal line impedance is determined by input & output impedances
 - Ex: a 50 to 200 ohm Balun requires a 100 ohm line

Where,

 Z_0 = Characteristic impedance of line

d = Distance between conductor centers

r = Conductor radius

k = Relative permittivity of insulationbetween conductors

Design Tradeoffs

- Most Balun/Choke designs don't provide both high Z <u>and</u> wide bandwidth
- Ferrite material
 - High Mu (61 & 77)
 - High loss
 - Narrow BW
 - High Z/turn
 - Low Mu (33 & 43)
 - Low loss
 - Wider BW
 - Low Z/turn
 - Frequent choice for HF Baluns/Chokes
- Power dissipation
 - For Current Baluns, Common Mode power is the critical spec
 - Single 2.4 in ferrite core may only be good for 5-10 watts of dissipation
 - Use stacked cores for more power dissipation

Examples: Common Mode Chokes

DX Engineering DXE-FCC050-H05-B

Homebrew Toroidal Choke

Homebrew Toroidal Choke

FT240-43 mix vs 61 mix

Examples: Common Mode Chokes

Ferrite & Powdered Iron (Iron Powder) Suppliers

Amidon

- Wide variety of products
- Recently changed ownership
 - Used to have a good info sheet (=>?)
 - Used to have a minimum order requirement
- Balun kits
 - Kit with handbook for extra \$ => handbook is available free on the Internet

• Fair-Rite

- <u>Producer</u> of ferrite & powdered iron products
 - Not a good source for "how to build" info (ie, don't call for help)
- Evaluation (not balun or transformer) kits
- Distributors (Mouser, ...)
- Other Distributors: Palomar-Engineers, Radioworks, KF7P, ...
 - May not be cost effective for some orders

Example: Using the Amidon Spec Sheet

What type core do I have?

- 1) Wrap 10 turns around core
- 2) Measure inductance at a frequency well below resonance (4.3 MHz):

L = 16.4 uH = 0.0164 mH

3) Calculate $A_L = mH/1000 turns$

= $mH/10 turns x (n_{RATIO})^2$

= mH/10 turns x 10,000

 $= 0.0164 \times 10,000$

= 164 mH/1000 turns

Example: Using the Amidon Spec Sheet – cont'd

FERRITE TOROIDAL CORES

MATERIAL 43								Permeability 800	
Core	r	O.D. (inches)	I.D. (inches)	Hgt. (inches)	ℓ _e (cm)	A _e (cm) ²	V _e (cm) ³	A _L Value mh/1000 turns	
FT-23	-43	.230	.120	.060	1.30	.020	.027	158	
FT-37	-43	.375	.187	.125	2.07	.072	.150	350	
FT-50	-43	.500	.281	.188	2.95	.129	.380	440	
FT-50A	-43	.500	.312	.250	3.12	.150	.470	480	
FT-50B	-43	.500	.312	.500	3.12	.299	.930	965	
FT-82	-43	.825	.520	.250	5.20	.243	1.260	470	
FT-114	-43	1.142	.748	.295	7.30	.370	2.700	510	
FT-140	-43	1.400	.900	.500	8.90	.790	7.000	885	
FT-240	-43	2.400	1.400	.500	14.50	1.580	22.800	1075	

MATERIAL 61							Permeability 125	
Core number		O.D. (inches)	I.D. (inches)	Hgt. (inches)	ℓ _e (cm)	A _e (cm) ²	V _e (cm) ³	A _L Value mh/1000 turns
FT-23	-61	.230	.120	.060	1.34	.020	.029	24.8
FT-37	-61	.375	.187	.125	2.15	.076	.163	55.3
FT-50	-61	.500	.281	.188	3.02	.133	.401	69.0
FT-50A	-61	.500	.312	.250	3.68	.152	.559	75.0
FT-50B	-61	.500	.312	.500	3.18	.303	.963	150.0
FT-82	-61	.825	.516	.250	5.26	.246	1.290	75.0
FT-114	-61	1.142	.750	.295	7.42	.375	2.790	80.0
FT-114A	A-61	1.142	.750	.545	7.42	.690	5.130	145.0
FT-140	-61	1.400	.900	.500	9.02	.806	7.280	140.0
FT-240	-61	2.400	1.400	.500	14.80	1.610	23.900	171.0

MATER	RIAL 6	57					Permeability 40	
Core number		O.D. (inches)	I.D. (inches)	Hgt. (inches)	ℓ _e (cm)	A _e (cm) ²	V _e (cm) ³	A _L Value mh/1000 turns
FT-23	-67	.230	.120	.060	1.34	.021	.029	6.0 Min
FT-37	-67	.375	.187	.125	2.15	.076	.163	18.0
FT-50	-67	.500	.281	.188	3.02	.133	.401	22.0
FT-50A	-67	.500	.312	.250	3.68	.152	.559	24.0
FT-50B	-67	.500	.312	.500	3.18	.303	.963	48.0
FT-82	-67	.825	.516	.250	5.26	.246	1.290	24.0
FT-114	-67	1.142	.750	.295	7.42	.375	2.790	25.4
FT-140	-67	1.400	.900	.500	9.02	.806	7.280	45.0
FT-240	-67	2.400	1.400	.500	14.80	1.610	23.900	55.0

MATERIAL 68 Permeability								
Core number		O.D. (inches)	I.D. (inches)	Hgt. (inches)	ε _e (cm)	A _e (cm) ²	V _e (cm) ³	A _L Value mh/1000 turns
FT-23	-68	.230	.120	.060	1.34	.021	.029	4.0
FT-37	-68	.375	.187	.125	2.15	.076	.163	8.8
FT-50	-68	.500	.281	.188	3.02	.133	.401	11.0
FT-50A	-68	.500	.312	.250	3.68	.152	.559	12.0
FT-82	-68	.825	.520	.250	5.26	.246	1.290	11.7
FT-114	-68	1.142	.750	.295	7.42	.375	2.790	12.7

AMIDAN 240 Briggs Avenue, Costa Mesa, California 92626, U.S.A. • TEL. (714) 850-4660 • FAX (714) 850-1163

- On a mfg spec sheet, find the A_L that is closest to your measured value
- Core is 2.4 in diameter => Material = 61
 (Actual A_L values can vary =/- 25%)

Conclusions

- When should a Balun/Choke be used
 - Answer1: When you suspect Common Mode Current is causing a problem
 - Not just because someone told you to use one
 - Answer2: With monoband antennas, try a different length of transmission line first
- What type of Balun/Choke should be used
 - Answers:
 - Usually a Current Balun/Choke
 - Voltage Baluns for high impedance antennas like end fed halfwaves
- Where should they be installed
 - Answer: Start with one at the antenna
- What should I observe after I install one
 - Answer: Problem gets better, gets worse, or doesn't change at all
- It is best to know the impedance vs frequency of a Balun/Choke before you use it
 - Some antenna analyzers don't have enough range (MFJ-259 limited to Z<600 ohms)