Buying an HF High Power Amplifier:

-What to consider first-

Two Parts:

- 1. Some Trade-offs:
 - New vs. Used
 - Tube vs. Solid State
- 2. A Troubleshooting Example
 - My article on eHam "The Big Step to 1.5Kw"
 (www.eham.net/articles/21381)

Overview discussion due to time constraint

Why Do You Want The Power?

- DX chasing
- Contesting
- Reliable communications during poor conditions
 - Daily and seasonal variations
 - Sunspot cycle
 - You may not need the amp in a few years
- General rule: Upgrade antennas first and amps last
 - "If you can't hear'em, you can't work'em"
 - "A big amp won't make you a big gun"

What To Buy

Selection criteria

- Maximum power
- Best Bang/Buck
 - I like "\$/watt" (with a max power of 1500 watts out)
- Reliability
- New vs Used
- Tube vs Solid State

Used Amplifiers (Tube Types)

Examples (watts are PEP output):

```
Yaseu FL-2100B $350+
Heathkit SB200 (600w) $400+
Heathkit SB220 (1Kw+) $800+
Drake L4 (1 Kw) $800+
Collins 30L1 (500w) $1000+
Rockwell/Collins HF-80 (45Kw) over $8000
Others (500w to ????w) $250 to $$$+
```

- Many older amps are power supply limited
 - Upgrading to bigger tubes won't get you much more output
- Avoid "CB" amps

Used Amplifiers (Tube Types) - continued

- Known design limitations/problems
 - Many popular amps are over 30 years old
 - Designs over 40 years old
 - Parasitic instability => catastrophic tube & part destruction
 - Soft start-up circuitry
 - Exciter power level (min & max)
 - Too much drive => splatter and/or tube failure
 - ALC may not be a good way to control drive level
 - T/R switching interface circuitry (100+ vdc and/or high current)
 - CW keying interface circuitry
 - Meter protection circuitry

Used Amplifiers (Tube Types) - continued

- Known design limitations/problems continued
 - Filament voltage (tube life vs. output power)
 - Most old tubes should be "de-gassed" before HV applied
 - "Gassy" tubes can catastrophically short on power up
 - Even applies to NOS tubes
 - Usually requires a high power variac
 - Modification info & kits available for most amps:
 - Rich Measures (www.somis.org/)
 - Harbach (<u>www.harbachelectronis.com/</u>)
 - Many other sites on the Internet

Used Amplifiers (Tube Types) - continued

- Replacement parts may be hard to find and/or expensive
 - Power transformers:
 - Can cost >\$400+ if you can find one
 - ALPHA charges \$750
 - Electrolytic capacitors (\$150+)
 - Replacement tubes:
 - Multi-tube amps usually require <u>matched</u> tubes (RF Parts does this)
 - U.S. made tubes becoming scarce & are expensive
 - "Sweep" tubes (I recommend avoiding amps that use these tubes)
 - 3CX1200A7 (~\$1100 new)
 - 8877/3CX1500 (~\$1100 new, but medical "pulls" available for ~\$250)
 - Foreign mfgs may be the only option (cheaper, but quality=?)
 - 3-500Z (~\$170 for Chinese tubes)
 - 572B (~\$100/matched pair for Russian tubes)
 - 8877 (~\$600)
 - GU-xx (Russian)

Final cost of a used tube type amp can be **1.5 to >2x** the original purchase \$

1Kw CB Sweep Tube Amplifier

Used Amplifiers (Solid State Types)

- Older transistor amps not as well protected as modern amps
 - Transistor amps <u>VERY</u> limited on allowable load SWR
 - Frequently include an internal automatic antenna tuner
 - Prone to blow out transistors in final stage
 - Transmit into wrong antenna at full power
 - Hot switching
 - Computer glitch (stations with computer control)
 - Defective antenna relay
 - Replacement transistors may not be available or big \$\$\$\$
 - Power supply spikes
- Cooling is also a big design challenge compared to tube amps
- Power supply needed for 1000 watts out (2 Kw input):
 - 12 vdc @ 160+ amps
 - 50 vdc @ 50 amps
 - A good power supply can cost as much as the RF amp

New Amplifiers (Tube Types)

		<u>Cost</u>	\$/watt	e <u>Ham Rating</u>
•	Ameritron	\$700-3000	1.2-1.9	4.4-5.0
	– AL-82 (1500w)	\$2300	1.5	4.8
•	QRO HF-2500DX	\$4100	2.7	4.9
•	Commander HF-2500	\$3500	2.3	5.0
•	Acom	\$5500	3.7	5.0
•	Alpha 9500	\$10000	6.0	4.4

New Amplifiers (Solid State Types)

		Cost	\$/watt	e <u>Ham Rating</u>
•	Ameritron ALS-600	\$1200	2.0	4.0
•	Yaseu Quadra (1Kw)	\$4000	4.0	4.4
•	Icom PW-1 (1Kw)	\$4700	4.7	4.6
•	Tokyo HL-2.5KFX(1.5K)	w) \$6000	4.0	5.0

Newer SS amps:

- Improved reliability, but still not as rugged as tube amps
 - Still hear stories about output transistor failures for unknown reasons
 - Recent Quadra repair was over \$750 for transistors and took >3 months
- Cost 2-3x what a comparable tube amp would cost
 - Partly due to the internal automatic antenna tuner

Other Considerations

- Shipping expense:
 - Weight: 70-100 lbs
 - May need to partially disassemble and pack into several boxes
 - AL-82 requires 3 boxes
- AC power:
 - 240VAC is advisable for all amps over 500 watts output
 - 240VAC required with some amps
- Can your coax, tuners, RF switches, antennas, etc. handle the increased power?
- RFI:
 - TV, sound system, telephone, computer, alarm system, ham radio interfaces, ...
 - Neighbors and especially the <u>wife</u>

Other Considerations - continued

- Safety:
 - Lethal voltages in tube amps!!
 - ARC welding currents in SS amps
 - High power RF signals can be a health concern:
 - FCC requirements apply to every RF emitting device in the US
 - Both "controlled" and "uncontrolled" environments
 - Must complete the FCC "RF Environmental Evaluation" if RF power into the antenna exceeds:
 - » 500 watts (160-40 M)
 - » 50 watts (10 M)

A Troubleshooting Story (New Ameritron AL-82)

Initial Problems and Interesting Observations

- Operational Problems:
 - Persistent arcing in the output tank
 - RFI
 - Low output power (<1Kw on some bands)
- Observations:
 - Loose hardware and solder flash
 - Cracked wafer on bandswitch
 - Bent tab on bandswitch
 - Mis-aligned plate tuning capacitor
 - Improperly adjusted arc voltage limiter gap
 - High input SWR on all bands
 - Internal power meter readings very inaccurate
 - Plate tuning capacitor not in correct position after tune-up

Defective Bandswitch (Bent tab)

Tuning Capacitor and Arc Voltage Limiter

Problems & Observations - continued

Low output power:

- Max out = 1 KW, even with 105 watts of drive power
- The amplifier is specified to deliver 1500 watts out with 100 watts drive.
- Incorrect setting for the plate capacitor

Input SWR:

- Input SWR was between 1.5 and 2.0:1 on all bands (no resonance)
- The amplifier is specified to have a minimum input SWR for each band of less than 1.2:1 at resonance.

Amplifier's "Output Power" meter readings:

- 1500 watts into 50 ohm dummy load
- 2200 watts into dipole
- 1000 watts into vertical

Problems & Observations - continued

Arcing Symptoms:

- A loud hissing sound from inside the amplifier
- Both plate and grid current meter reading would abruptly <u>drop</u> nearly to zero
- The symptoms didn't change with load type.
- I never encountered arcing at output power levels below ~700 watts.
- A carbon had formed on one of the bandswitch wafers (Figure 3)
 - Formed after only about 20 short duration arcing events

Figure 3: Arced Bandswitch in My Amplifier

ARCing (the end result)

Figure 5: The Final Result (Output Tank Bandswitch on the Measure's Website)

Persistent ARCing can lead to serious consequences

Problems & Observations - continued

RFI:

- RF interference when the amplifier output power was increased above the 500 watt level:
 - Audio and TV equipment
 - Telephones
 - Digitally controlled radio equipment
 - Computers
 - <u>Un</u>powered burglar alarm system
- RF in the shack
 - "Hot" mic
 - Feedback into the exciter
 - Distorted transmit audio (unintelligible in severe cases)
 - Transmitter would not turn off (not using VOX!)

Solutions

- Fixed all workmanship problems first
- Addressed Arcing next:
 - Two technical camps:
 - Parasitic oscillations
 - Improper loading on the amplifier tube(s)
 - Parasitic oscillations usually cause one/more of:
 - Plate and/or grid currents <u>peg</u> their respective meters
 - Blown fuses
 - One or more components (diodes, resistors, tubes, etc) shorted or open
 - Erratic plate and grid current fluctuations during tune up

Arcing => Being Caused by Improper Loading

(Probably due to defective bandswitch)

To achieve max output power, must do an "impedance match" (Make R_{Load} look like R_{Tube} to the tube)

No ARCing has occurred since the defective bandswitch was replaced

Solutions - continued

Low output power:

- The defective bandswitch was also contributing to the low output power problem
- Amplifier input SWR was causing my transmitter to partially shut down due to activation of the SWR protection circuit

AL-82 Power Meter accuracy:

The amplifier "power" meter is only measuring the *voltage* at the antenna output, and converting that *voltage* reading to a power reading on the meter <u>assuming a purely resistive 50 ohm load</u> (Figure 4)

Solutions - continued

RFI:

- I found it necessary to incorporate a number of the fixes per the
 ARRL RFI Book Vol 2:
 - Improved RF filters on AC lines
 - Significantly improved station RF grounding
 - Single point ground
 - Counterpoise with ground rods
 - Added RF "common mode" chokes in signal cables and AC power cords
 - Relocation of some antennas
- Adding the recommended AC power line common mode choke to my sub-woofer audio amplifier caused it to catastrophically fail
 - Blew out all of the power FET's

Success (Almost)

- After successful trial runs at 1.5 Kw into a 50 ohm dummy load with no arcing, I decided to try loading into my antennas:
 - My commercial multi-band vertical failed after about a minute at 1.5 Kw
 - The manufacturer rates this antenna for "full legal limit"
 - I was told on the phone not exceed 500 watts CW
 - The manufacturer uses **500 volt silver mica caps** to tune the antenna
 - My trap dipole failed after two minutes at 1.5 Kw
 - This time, it was a commercial balun that had failed
 - The manufacturer rates this balun for "2 Kw PEP"
 - After replacing the balun, the amp failed again. This time it blew a 0.5 inch diameter hole through one of the commercial 40 M traps (these traps are rated for "2 Kw PEP"). I made my own high power traps from PVC, doorknob caps, and 600 volt wire.

"P.E.P." is a *voltage* rating

Homebrew Trap

Success (Finally!!)

- I can now put 1.5 Kw into my dipole on all bands for several minutes without arcing or other problems
- I can easily find the maximum output power point
- The plate tuning capacitor ends up in the designated position on all bands
- The amplifier is also very tolerant of mis-tuning of both the plate and load capacitors
 - While running 1.5 Kw into the antenna (which has a 1.6:1 SWR), I can
 de-tune either/both the plate and load capacitors enough to drop the
 output power by 500 watts with no signs of arcing or other unusual
 behavior.