Articles

- QST November 2009
- QST August 1986
- QST September 1986
- QST October 1986
- QST November 1986
- TCSTIB 85-10
- NX6R Presentation

EMP

- Electro-magnetic Pulse
- What causes an EMP
- Properties of an EMP
- What does an EMP do
- How can equipment be protected

Causes

- Lightning
- Geomagnetic Storm
- Power Line Transient
- Thermonuclear Detonation
- E-Bomb

E-Bomb

- Localized EMP effect
- Cheap to Make (\$1000 \$2000)
- Commonly available materials
- Well known technology
- Multiple delivery methods
- Peak current of large device stronger than lightning stroke

Ideal Terrorist Weapon

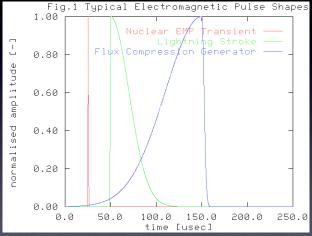
- Highly disruptive
- Minimum collateral damage
- Conventional C-4 exposive
- Can't be detected
- Can be fitted in van and driven to site

Coaxial Flux Compression Generator **Consider files** | Double Street and Andreal | Monthless Files** | Monthless** | Monthless** | Monthless** |

Virtual Cathode Oscillator Virtual Cathode Virtual Cathode

EMP History

- Operation Starfish Prime
- Predicted by Enrico Fermi
- Street Lights burned out in Hawaii


Starfish Prime

- July 9, 1962
- Altitude of 250 miles
- 1.4 Mt 6.0 Peta Joules
- Took out microwave link
- Street lights in Hawaii
- 900 miles away

Compton Electron Scattering

- Intense short burst of gamma 0.3%
- Collide with electrons in air molecules
- Energetic electrons knock out other electrons
- Cascade offect 30,000 electrons for each gamma
- 10 ^ 11 Joules of energy in EMP per megaton
- Magnetic field causes electrons to spiral

Pulse Shapes Fig.1 Typical Electromagnetic Pulse Shapes

EMP Induced Surges

Conductor Type	EMP Rise Time uS	Peak Voltage (volts)	Peak Current
Long Unshielded Wires Power Lines	.011	100K - 5M	IK - 10K
Unshielded Telephone wires at outlet	.01 - 1	100 - 10k	I - 100
AC power lines at wall outlet	.1 - 10	Ik - 50k	10 - 100
HF Antennas	.011	I0k - IM	500 - 100k
VHF Antennas	.00101	IK - 100K	100 - Ik
UHF Antennas	.00101	100 - 10k	10 - 100
Shielded Cable	I - I00	I - 100	.1 - 50

Spectrum (SLIND AND LINGUA AND L

Effects

- Transportation
- Access
- Communications

Transportation

- Most Vehicles have computers
- Also metal bodies
- Not grounded

How does it cause damage

- Conduction Antennas, Power lines, Ground
- Induction Cables and Wires
- Coils, chokes and transformers act as generators

Protection

- Disconnect external cables
- Good grounding
- Transient suppressors
- Energy tolerant componets
- Faraday cage or shielding

Ground Radial Coax Lines Ferimeter Ground House or Equipment Building Or Single Point Ground Panel

Grounding Tips

- Common "bulkhead" ground point
- Single-point ground panel
- Suppressors external to building
- Multiple ground rods interconnected with #6 or larger wire

Modified Faraday Cage

- Steel file cabinet
- Add steel plate to close bottom
- Good shielding below 10 MHz
- Add shielding gaskets around drawers for protection to VHF / UHF
- Store spare equipment, microphones, coax cables

Other measures

- Ground Vehicles
- Screen in garage walls and door
- Store data on optical media
- Metal garden sheads