High Power Magnetic Loop Antennas

Bill Leonard NOCU

Mag Loop Feed Circuits

Circumference should be between 1/8 & 1/4 λ

I is "constant around loop

The Faraday **coupling loop** configuration was used for impedance matching in this project. Circumference of the Faraday loop is 1/5 of the main loop circumference. With 10 feet chosen for the main loop circumference, a circumference of 2 feet was used for the Faraday coupling loop.

Frank Doerenberg (N4SPP) suggests five configurations for constructing the coupling loop. Configuration #4 was choosen due to its simplicity and ease of construction. This configuration does not split the coax at any point as the other configurations do.

Safety

- RF Voltage:
 - Magnetic Loops can have 10-20 KV of RF energy
 - RF burns are nasty and don't heal quickly
 - When are they potentially lethal???
 - Most HF ham antennas don't exceed 500 V_{PEAK} at the feed point
 - Ex: 1500 W into 50 ohm yields 387 V_{PEAK}
- Unsafe Field Strength (100 W transmit power):
 - <13 ft @ 14 MHz</p>
 - <10 ft @ 28 MHz
 - Do these guidelines still apply in the near field of a magnetic antenna?

AlexLoop on 40 M

Specified Bands: 40-10 M

Circumference: 9 ft (~3 ft diameter)

Diameter of Conductor: 0.5 in

Frequency: 7 MHz

Transmitter Power: 10 W

Using Mag Loop Calculator "66pacific.com"*

Antenna efficiency: 6% (-12.2 dB below 100%)

Antenna bandwidth: 10.1 kHz

Tuning Capacitance: 324 pF

Probably very optimistic

Capacitor voltage: 699 volts RMS

Resonant circulating current: 9.95 A

Radiation resistance: 0.003 ohms

Loss Resistance: 0.047 ohms

Quality Factor (Q): 696

5000 watts into 50 ohm load

(Requires a special <u>low loss</u> capacitor)

-Capacitor loss not included (can be 0.030 to >0.100 ohms with air variable caps)

Mechanical connections can have high loss

^{*-}For octagonal shaped loops

AlexLoop Butterfly Tuning Capacitor

Butterfly style reduces contact losses

3KV requires 0.12 in. spacing

Mechanical - connections ???

Conductor Diameter

Circumference: 9 ft (~3 ft diameter)

Frequency: 7 MHz

Transmitter Power: 100 W

Diameter of Conductor: 2.0 in

Antenna efficiency: 20% (-6.9 dB below 100%)

Antenna bandwidth: 2.01 kHz

Tuning Capacitance: 220 pF

Capacitor voltage: 5,999 volts RMS
Resonant circulating current: 58.0 A

Radiation resistance: 0.003 ohms

Loss Resistance: 0.012 ohms

Quality Factor (Q): 3,476

Diameter of Conductor: 3.0 in

Antenna efficiency: 28% (-5.6 dB below 100%)

Antenna bandwidth: 1.35 kHz

Tuning Capacitance: 201 pF

Capacitor voltage: 7,658 volts RMS

Resonant circulating current: 67.6 A

Radiation resistance: 0.003 ohms

Loss Resistance: 0.008 ohms

Quality Factor (Q): 5,178

Freq drift due to heating??

- 1) At 7 MHz the circumference should be between 17 and 34 feet
- 2) Conductors can be too small or too large
- 3) An air variable with 0.25 in plate spacing is only good for 5KV

Loop Size

Diameter of Conductor: 2.0 in

Frequency: 7.0 MHz

Transmitter Power: 1000 W

Circumference: 9 ft (~3 ft diameter)

Antenna efficiency: 20% (-6.9 dB below 100%)

Antenna bandwidth: 2.01 kHz

Tuning Capacitance: 220 pF

Capacitor voltage: 18,970 volts RMS

Resonant circulating current: 183 A

Radiation resistance: 0.003 ohms

Loss Resistance: 0.012 ohms

Quality Factor (Q): 3,476

Circumference: 38 ft (~12 ft diameter)

Antenna efficiency: 95% (-0.2 dB below 100%)

Antenna bandwidth: 24.3 kHz

Tuning Capacitance: 39 pF

Capacitor voltage: 12,954 volts RMS

Resonant circulating current: 22.2 A

Radiation resistance: 0.963 ohms

Loss Resistance: 0.050 ohms

Quality Factor (Q): 288

Frequency

Circumference: 38 ft (12 ft diameter)

Diameter of Conductor: 1.125 in

Transmitter Power: 1000 W

Frequency: 1.8 MHz

Antenna efficiency: 9% (-10.7 dB below 100%)

Antenna bandwidth: 1.32 kHz

Tuning Capacitance: 655 pF

Capacitor voltage: 13,584 volts RMS (19,200 volts PEAK)

Resonant circulating current: 101 A

Radiation resistance: 0.004 ohms

Loss Resistance: 0.045 ohms

Quality Factor (Q): 1,367

Frequency: 7.0 MHz

Antenna efficiency: 92% (-0.4 dB below 100%)

Antenna bandwidth: 28.1 kHz

Tuning Capacitance: 43 pF

Capacitor voltage: 11,440 volts RMS

Resonant circulating current: 21.8 A

Radiation resistance: 0.963 ohms

Loss Resistance: 0.089 ohms

Quality Factor (Q): 249

Circumference should be between 66.3 and 133 feet

Circumference should be between 17 and 34 feet

RF Impedance of Flat Conductors

RF current density is highest at the points where the <u>curvature is greatest</u>.

EETimes: Power Tip 26: Current distribution in high-frequency conductors https://www.eetimes.com/document.asp?doc_id=1278215

Commercial High Power Mag Loops

Cirro Mazzoni (I3VHF)

Sold by DX Engineering

Commercial High Power Mag Loops

Cirro Mazzoni (I3VHF)

A.T.U. 2.0 (Automatic Tuner Unit)

