Topics in Digital TV: DTV Basics Glenn Adams (NOGNR)

Agenda

► ATV Review

- DTV Overview
- Transport Basics
- Television Stuff A & V
- Metadata PSI & PSIP
- Amateur DTV

Analog Television (US)

- NTSC Monochrome (1941)
 - 4:3 aspect ratio, 525 lines (486 visible), 30 fps sent as 60 interlaced fields per second
 - 15750Hz line frequency
 - VSB luminance (Y), FM audio (monaural)
 - 6MHz channel bandwidth
- NTSC Color (1953)
 - CIE 1931 colorimetry
 - QAM chrominance (I/Q) at ~3.58MHz (suppressed carrier)
 - 29.97 (30/1.001) fps as 59.94 interlaced fields per second
 - 15734.26Hz (15750/1.001) line frequency

Human Vision

- Cones
 - function at medium to high intensity
 - ~4.5 million cones in retina
 - 3 types: S (420-440), M (534-545), L (564-580)
- Rods
 - function at low intensity
 - ~90 million in retina
 - peak at 498nm
- Experiments of David Wright and John Guild (1920s)
 - using monochromatic test color
 - observer adjusts brightness of three primaries for match color

CIE 1931

- Commission internationale de l'éclairage
 - aka International Commission on Illumination
 - Established 1913 as successor to Commission internationale de photométrie
 - based in Vienna, Austria
- 8th Congress (1931)
 - Standard observer based on prior work, including that of Wright and Guild (1920s)
 - CIE RGB and XYZ Color Spaces
 - Red (700)
 - Green (546.1)
 - Blue (435.8)

CIE RGB Color Space

$$R = \int_0^\infty I(\lambda) \, \overline{r}(\lambda) \, d\lambda$$
$$G = \int_0^\infty I(\lambda) \, \overline{g}(\lambda) \, d\lambda$$
$$B = \int_0^\infty I(\lambda) \, \overline{b}(\lambda) \, d\lambda$$

$$I(\lambda) \stackrel{\text{\tiny def}}{=} \frac{\partial^2 \Phi}{\partial A \partial \lambda} \approx \frac{\Phi}{A \Lambda \lambda}$$

CIE XYZ Color Space

$$X = \int_0^\infty I(\lambda) \, \overline{x}(\lambda) \, d\lambda$$
$$Y = \int_0^\infty I(\lambda) \, \overline{y}(\lambda) \, d\lambda$$
$$Z = \int_0^\infty I(\lambda) \, \overline{z}(\lambda) \, d\lambda$$

$$I(\lambda) \stackrel{\text{\tiny def}}{=} \frac{\partial^2 \Phi}{\partial A \partial \lambda} \approx \frac{\Phi}{A \Lambda \lambda}$$

CIE xyY Color Space

$$x = \frac{X}{X+Y+Z}$$

$$X = \frac{Y}{y}x$$

$$Y = \frac{Y}{X+Y+Z}$$

$$Z = \frac{Z}{X+Y+Z} = 1-x-y$$

$$Z = \frac{Y}{y}(1-x-y)$$

YUV Color Space

$$\begin{split} W_R &= 0.299 \\ W_B &= 0.114 \\ W_G &= 1 - W_R - W_B = 0.587 \\ U_{Max} &= 0.436 \\ V_{Max} &= 0.615 \end{split}$$

$$Y = W_R R + W_G G + W_B B \in [0,1]$$

$$U = U_{Max} \frac{B - Y}{1 - W_B} \qquad \in [-U_{Max}, U_{Max}]$$

$$V = V_{Max} \frac{R - Y}{1 - W_R} \qquad \in [-V_{Max}, V_{Max}]$$

YUV vs YIQ Color Space

YUV vs YIQ — Sample Separation

YIQ Color Space

$$\begin{bmatrix} I \\ Q \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos 33 & \sin 33 \\ -\sin 33 & \cos 33 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}$$

$$Y = 0.299 R + 0.587 G + 0.114 B$$
 $\in [0,1]$
 $I = 0.736 (R - Y) - 0.268 (B - Y)$ $\in [-0.596, 0.596]$
 $Q = 0.478 (R - Y) + 0.413 (B - Y)$ $\in [-0.523, 0.523]$

8

Agenda

- ✓ ATV Review
- > DTV Overview
- Transport Basics
- Television Stuff A & V
- Metadata PSI & PSIP
- Amateur DTV

.....

MPEG-2 Transport Streams carrying multiplexed: • Service Information (ATSC PSIP + MPEG-2 PSI) • Audio, video and data elementary streams

Agenda

- ✓ ATV Review
- ✓ DTV Overview
- > Transport Basics
- Television Stuff A & V
- Metadata PSI & PSIP
- Amateur DTV

DTV Broadcast Stream

- Special case of MPEG-2 transport stream
- May contain multiple virtual channels
 - Video channels
 - A video stream
 - One or more audio streams
 - Possibly one or more data streams
 - Audio channels
 - One or more audio streams
 - Possibly one or more data streams
 - Data-only channels
 - One or more data streams

MPEG-2 Transport Stream

- Made up of 188-byte transport packets, each with 4 byte header & 184 byte payload
- Each packet contains any ONE kind of information audio, video, data, PSI, ...

MPEG-2 Transport Stream (Contd.)

- We say transport packets have multiple interleaved elementary streams -- audio, video, data, PSI, ...
- Packets belonging to the same elementary stream are identified by packet id (PID) in packet header (same color in our illustrations).

MPEG-2 Transport Stream – Header Fields

Noteworthy fields:

- 1) Sync Byte Find packet boundary
- 2) PID Used while demultiplexing stream
- 3) Continuity Counter Identify packet loss
- 4) PCR stamp in adaptation field Clock sync

MPEG Header Fields: Sync Byte

- When a decoder first tunes, all it sees are a stream of 0's and 1's
- The decoder must first identify the beginning of packets before it can interpret the stream
- The decoder uses the Sync Byte field to do this

MPEG Header Fields: Sync Byte (Contd.)

- The Sync Byte of a packet is always 0x47 (Hexadecimal) or 01000111 binary
- The decoder looks for strings of zeros and ones which match the pattern of the sync byte (see red below)

MPEG Header Fields: Sync Byte (Contd.)

- Once the decoder finds a 0x47 in the stream, it looks 187 bytes down the stream, and looks for another 0x47
- If it finds three Sync Bytes in a row, then the Decoder has Found Sync and assumes packet boundaries from then on
- Each packet is tested for 0x47 as soon as it arrives. If a packet arrives with an incorrect sync byte, the decoder starts over. This is called SYNC LOSS

0x47 187 bytes 0x47 187 bytes 0x47 187 bytes Packet 188 Sync Lost	
	ytes
Packet 188 bytes Packet 188 bytes 0x32 110101010101110110101010	10001

MPEG Header Fields: Sync Byte (Contd.)

- If you don't have Packet Sync, the decoder cannot find packet boundaries. You will not be able to decode at all
- Packet Sync problems typically occur in hardware at packet boundaries during format converters, edge devices, demodulators etc:
 - ASI to Gig-E
 - ASI to Microwave or QAM
 - Satellite to ASI

PIDs Defined

- PID stands for Packet ID
- Each Packet has a PID (indicated by color). Packets belonging to the same source of information have the same PID (same color).

Transport Stream Demultiplexing

 When a set top box first receives a Transport Stream, it demultiplexes that stream based on PID.

MPEG Header: Continuity Counter

The continuity counter is a 4 bit field in the header which increments by 1 each time a packet comes out on a specific PID:

All Packets PID 0x52

0 1 2 3 4 5 6 7 8 ... 14 15 0 1

When a PID 'skips' one value of the continuity Counter, we call it a 'Continuity Error.' This means one or more packets were lost.

MPEG Header: Continuity Counter (Contd.)

Identifies WHEN we lose Packets, but not HOW MANY!

- Packet loss causes many other kinds of analysis to 'reset' or give bogus results.
- Any analysis based on an average over many packets will automatically reset when it encounters continuity problems.
- Since a continuity error mean 'some packets' have been lost, frequent continuity errors should be one of the FIRST things you look for when debugging.

Digital Television (US)

- ATSC Main Service (1997)
 - ITU-R BT.709 (sRGB) colorimetry
 - 16:9 aspect ratio, 720 or 1080 lines, 24 or 30fps, interleaved or progressive
 - MPEG-2 Video
 - Dolby AC-3 Audio
 - MPEG-2 Transport Stream (188 bytes/packet)
 - Randomizer
 - 208/188 Reed Solomon Outer Coding
 - 2/3 Trellis Inner Coding
 - 8VSB Modulation
 - 6MHz channel bandwidth

