Receiver Front End Protection

Bill Leonard NOCU

7 April 2018

Topics

- What damages receiver front ends
- Common types of receiver front end protectors
- Example: homebrew protector

What Damages Receiver Front Ends?

- Damage results from exceeding a semiconductor's junction breakdown voltage
 - Base-Emitter junction (V_{BF} max) determines damage level for receiver front ends
 - Typical V_{BF} max for small signal bipolar RF transistors is ~2 V [~50 mW or 17 dBm]
 - Doesn't change when receiver is powered OFF
 - Damage:
 - Is instantaneous (nanoseconds)
 - Initial result of an overvoltage can vary from no change in performance to a dead device
 - Can be a "latent" failure
 - Not uncommon with ESD failures
- What is the maximum input power/voltage to a receiver?
 - Rarely spec'd by mfgs of ham equipment
 - Commonly used guideline: +10 dBm (1.0 V_{peak})
 - ARRL tests receivers at +10 dBm (10 mW)

What Damages Receiver Front Ends? (cont'd)

- Common sources for overvoltage at receiver front ends
 - Lightning
 - ESD
 - High RF voltages
 - Field day
 - SO2R stations
 - Separate receiver and transmitter sharing the same antenna

Lightning

- Best option: keep *all* lightning energy *outside of the shack*
 - Disconnect transmission line at a point *outside of the shack*
 - Use of relays doesn't equate to "disconnecting"
- 2nd best option: keep as much energy as possible outside of the shack
 - "Properly" ground everything outside the shack
 - Use a lightning protector *outside of the shack*
 - These devices are not intended to protect receiver front ends
 - Threshold voltage can be >500 V
- Other options
 - 1. Disconnect transmission line inside the shack
 - Use a glass jar to reduce fire risk
 - 2. Install a receiver front end protector with lightning protection
 - A Gas Discharge Tube (GDT) is used to minimize *catastrophic* damage from lightning
 - A GDT probably won't protect the receiver front end

ESD

- ESD is frequently reported as the cause of receiver front end failures
- Risk mitigation: bleed charge off of every antenna
 - For each antenna, ground
 - All non-selected antennas (ex: via remote antenna switch)
 - All antennas when not using the station
 - Via RF choke?
 - Via DC bleed resistor(s) (AD5X website)
 - Use a <u>high voltage</u>, high value resistor
 - Ex: 3 M Ω rated to 10 KV (costs ~\$6)
 - If you run high power to a highly reactive antenna, you might need 2-3 of these resistors in series
 - Do *NOT:*
 - Install DC bleed component at receiver antenna input
 - Connect unterminated transmission line to radio without bleeding off charge first

Typical Applications

Receive only: single receiver always connected to an antenna

Transmit and receive

Receiver Front End Protectors

- Common types:
 - T/R switch
 - Back to back diodes
 - Gas Discharge Tube (GDT)
 - Won't protect a receiver from damage
 - Back to back diodes with loss
 - Light bulb
 - Transformer (loss comes from saturation of transformer core)
 - T/R switch with back to back diodes
 - T/R switch with back to back diodes and loss
 - "Automatic Two-Transceiver Commutator" for SO2R applications (ACOM 2S1)
- Filter vs protection device
 - Filters are better choices than protection devices for some RF environments (ie, near AM broadcast stations)
 - Severe IMD interference

T/R Switch

- Used for protection from co-located transmitters
 - Can offer a high level of protection, but only against co-located transmitters
 - Protection is achieved via configuration
 - During transmit the receiver input is:
 - Disconnected from the antenna and
 - Grounded
 - All relays must switch properly to achieve full protection
 - No protection when you don't control the transmitter
 - Ex: field day operations
- Relay timing is important in QSK (break-in CW mode) applications
- Good isolation may be required
 - Between relay contacts
 - Unwanted coupling

Commercial Units (T/R Switch)

- KD9SV Receiver Front End Protector (P/N SV-FESSS @ DX Engr)
 - T/R switch
 - Rel1 disconnects receiver from antenna input during transmit
 - Rel2 shorts receiver input to ground during transmit
 - What happens with loss of:
 - +12V
 - T/R switch signal?

Back to Back Diodes

- Simple and cheap
- Protection not dependent upon configuration
- Diode type is not critical (except, don't use PIN diodes)
- Limited to low input power levels => receive only applications
 - +30 dBm = 1 watt max (when using ½ watt diodes)
 - If either diode fails open => receiver front end not protected
- Spurious signals in receiver can be a problem
 - Some mfgs offer choices on spurious levels (DX Engineering RG-5000 series)

Back To Back Diodes Clipping Level

Back to Back Diodes With Loss (Light Bulb)

- Light bulb adds loss at high power levels => reduces dissipation in diodes
- Popular circuit that has been around for some time
 - No design or performance info found
 - Max power level = ?

Back to Back Diodes With Loss (Light Bulb)

- Light bulb adds loss at high power levels => reduces dissipation in diodes
- Popular circuit that has been around for some time
 - No design or performance info found
 - Max power level = ?
 - Light bulb as an RF component?

T/R Switch With Back To Back Diodes And Lamp

Ameritron TRP-150

Notes:

- Maximum RF power is 100 watts
- Ameritron: "Do not transmit into the TRP-150 when the FROM RADIO KEY line is not connected."

Back to Back Diodes With Loss (Transformer)

Array Solutions: AS-RXFEP Receiver Front End Protector

- Uses transformer coupling and diodes
 - When transformers saturate they become resistors
 - Diodes don't have to dissipate all of the power
 - Design issues: power level for core saturation and core power dissipation
- Lightning protection (GDT) limits to 75 V (+48 dBm)
- Receive only tested with 10 watt RF input
 - "The maximum output (+10 dBm) is a few dB below the damage threshold of common transceivers like the FT-1000MP."

Example: Separate 2nd Receiver With a K3S/10 Transceiver

- Why add a 2nd receiver?
 - Diversity receive
 - Monitor two different bands simultaneously
 - Split operation
 - 2nd Rx has better performance than transceiver Rx
- Important considerations:
 - Connecting a 2nd receiver will reduce received signal levels by 3+ dB
 - "TEE" vs. "Hybrid" coupling
 - "TEE" coupling is adequate for this application
 - Both receivers directly connected to same antenna
 - Hybrid coupler is an expensive overkill for this application
 - This is a QRP example
 - K3S/10 transmitter has a 12W max output
 - Max output power with high SWR is <100 mW (+20 dBm)

Option 1: T/R Switch

Option 1: T/R Switch

What happens if the relay doesn't activate during transmit?

Option 1: T/R Switch

The full 12W divides evenly between receiver and antenna

Option 2: T/R Switch + Diode Limiter

Option 2: T/R Switch + Diode Limiter

K3S SWR protection circuit limits output to <100 mW

Back To Back Diodes Clipping Level

Option 3: T/R Switch + Diode Limiter With 9:1 Impedance Transformer

Option 3: T/R Switch + Diode Limiter With 9:1 Impedance Transformer

Option 2 Clipping Level

Option 2 : SWR Into Back-to-Back 9:1 Transformers

Option 2 : Back-to-Back 9:1 Transformer Insertion Loss

Summary

- Do you need a receiver front end protector?
 - Probably not if you:
 - Continuously bleed DC off all of your antennas
 - Use good ESD practices
 - Disconnect your antenna from receiver inside the shack
 - Don't operate near high power transmitters (ie, Field Day)
- T/R switch protectors:
 - Only protect against co-located transmitters you control
 - Carefully evaluate the consequences of each possible failure mode
 - If the relays don't switch properly:
 - Your receiver may have little or no protection, or
 - Your transmitter could have a direct copper path to your receiver input
- Lightning protection devices probably won't prevent receiver damage