The End Fed Half Wave Antenna

Bill Leonard NOCU7 Jan 2017

Voltage and Current Distribution on a Half Wave Antenna

- •To get EM radiation, we need to <u>accelerate</u> some electrons
- •At end => Voltage max & current min
- •At center => Voltage min & current max
- •Feed impedance changes as the feed point moves
 - •Min Z at center (typically 50-75 ohms)
 - •Max Z at ends (typically 2-5K ohms)
 - •Off Center Fed Dipole (OCFD) (typically ~200 ohms)

Static Electric Field Static Magnetic Field Electromagnetic (EM) Wave

For Radiation to Occur the RF Circuit Must Be Closed

- <u>Accelerating</u> electrons (ie., AC current) create an RF field
 •The larger the current => the larger the field
 •DC voltage creates an electric field (not an electromagnetic wave)
 •DC current creates a magnetic field (not an electromagnetic wave)
- 2) Every antenna must have a place for a field to originate <u>AND</u> terminate
 - •If there is no place for the EM field to originate <u>AND</u> terminate, no RF current will flow, and no EM field will be generated

Examples of a Closed RF Circuit

Both of These Can Work Well as Antennas Because:
 •RF circuits are CLOSED
 •SWR losses are low

•Note: a lossy ground will reduce the current flow => smaller RF Field

Example of an Open RF Circuit

Theoretically, there will no radiation for this setup
Many hams believe that no counterpoise is required for an end fed half wave antenna to work <u>well</u>
In many cases , radiation can occur with no <u>physical</u> counterpoise

The Ground Mounted Monopole Antenna

•Won't work very well when Height = ½ wavelength: •Circuit is closed, but SWR > 50:1

Impedance Versus Monopole Height

Feeding an End Fed Half Wave Antenna

•May work (somewhat) since the coax shield acts as a counterpoise:

- •Coax shield provides the return path for the RF field
- •Performance will vary with X, proximity to ground, etc
- •SWR losses on the coax can be a problem
 - •Tuner needs to be at the base of the antenna

Typical Tuner for an End Fed Half Wave Antenna

•Theoretically: this antenna will *not* radiate

No counterpoise

 In practice, it might radiate (somewhat) depending on <u>parasitic</u> coupling to coax shield

Typical Tuner for an End Fed Half Wave Antenna

Not the best approach, but might be ok for some applications
Coax shield is the counterpoise

Recommended Way to Feed an End Fed Half Wave Antenna

•With proper choice of components, can achieve an SWR ~1:1

•The capacitor simplifies tuning, but is not necessary

•Counterpoise:

•Important to have for stable, predictable performance

Length isn't critical, but little/no benefit for lengths > 0.05 wavelenth
 Don't go >0.25 wavelength

Watch out for the high voltages (at X)

•At 5 W (and 2000 ohms), V_{CAP}(Peak) = 100 V

- •At 100 W (and 2000 ohms), V_{CAP}(Peak) = 450 V
- •At 1500 W (and 2000 ohms), V_{CAP}(Peak) = 2400 V

Feed Impedance Versus Counterpoise Length

Example Transformer (not for high power)

The J-Pole Antenna

The J-Pole Antenna

Problems With End Fed Half Wave Antennas

•#1 Problem: Common mode currents on feedline

- •RF in shack
- •High noise levels on receive
- •Feedline and grounding can affect SWR and tuning
- •Isolating the feedling from the antenna can be difficult, even with a common mode choke
- •High voltages, even at low power
- •FCC RF exposure limits can be exceeded at low power levels

Bottomline

Tom Rauch (W8JI):

End fed half wave antennas are a good option for a temporary antenna when using low power and battery operation, far from power mains and noise sources.