Using Equalization on HF SSB

Bill Leonard
NØCU
Topics:

• Some Commonly Used Methods for Improving HF SSB Comms
• Some key points about speech and hearing
• The W2IHY 8 Band Equalizer + Noise Gate
 • What is it
 • When to use it
 • Where to use it
 • How to use it
 • What it can, and cannot do
What is “communication”?
• Communication ⇔ Transfer of Information

What is “information transfer”?
• CW
• Digital comms
• SSB Voice
 • Rag-chew
 • Breaking DX pile-ups
• FM Voice

Different modes require different methods to optimize information transfer
What can we do to improve our ability to communicate via HF SSB?

Typical communication path

Voice -> Mic > EQ < Xmtr <--- <--- Rcvr > EQ < Spkr < Ear < (Processor (Brain))

Typical Location

Why Not Here?
Some Commonly Used Methods for Improving HF SSB Comms:

1. Improve received SNR:
 • Use higher gain antennas
 • Use higher peak transmitter power
 • Raise **average** transmit power (compression)
 • There is a limit: trade-off between distortion vs. SNR improvement
 • Some (W2IHY) claim that straight compression can degrade **transmit** SNR
 • I question this claim (all limiters exhibit “small signal suppression”)
 • Compression will increase background noise when **no speech signal is present**
 • Use of a Noise Gate should mitigate this problem
 • “Matched Filter” detection:
 • “Matching” filters means more than just reducing bandwidth arbitrarily
 • There is a limit: trade-off between distortion vs. SNR improvement
 • A 10 Hz filter won’t work very well with a 60 wpm CW signal
 • Reducing receiver noise figure will not help when atmospheric noise is dominant
Some Commonly Used Methods for Improving HF SSB Comms (continued):

1. **Improve received SNR** (continued):
 - Compander/expander (technology exists, but not in use on Ham bands):
 - 3KHz input signal => reduced to 1.7 KHz => 2.4 dB SNR improvement at receiver
 - http://people.wallawalla.edu/~Rob.Frohne/qex/qex-art.html
 - However, for 2.1 KHz input signal => only 0.9 dB improvement!

 - Complicates both transmit & receiver hardware
 - Adds significant hardware complexity to analog radios
 - Can be implemented totally in software in digital radios
 - Could start becoming available on future generation SDR radios
 - Standards for the companding/expanding algorithms will need to be agreed to ahead of time by all manufacturers
 - Manufacturers will need to offer more than 1 dB of improvement
Some Commonly Used Methods for Improving HF SSB Comms (continued):

2. Improve the ability to extract the information from the signal (Processing):
 • Digital Signal Processing (DSP):
 • “Brick Wall” filters
 • Noise reduction algorithms
 • Interference cancelling algorithms
 • Maximize the Brain’s processing power by “Equalizing”

 => Better received SNR

Equalization is the process of shaping (ie, intentionally distorting) the frequency response curve to better match the brain’s speech processing algorithm.

Spectrogram:

Speech frequency content varies with time, but some frequency ranges are more important than others to the Brain.
The W2IHY 8 Band Equalizer + Noise Gate:

New: $270
Mic Cable: $30
Used (w/cable): $150-200
The W2IHY 8 Band Equalizer + Noise Gate (continued):

• The 8 Band Equalizer breaks up the input audio spectrum from the microphone into 8 sub-bands with center frequencies of:

\[
\begin{array}{c}
50 \text{ Hz} \\
100 \text{ Hz} \\
200 \text{ Hz} \\
400 \text{ Hz} \\
800 \text{ Hz} \\
1600 \text{ Hz} \\
2400 \text{ Hz} \\
3200 \text{ Hz}
\end{array}
\]

For each sub-band, mid-band gain adjustable: -16 to +16 dB:

• The Noise Gate shuts off the audio to the transmitter during periods when there is no speech input:
 • This unit effectively eliminates the background noise from capturing the transmitter during pauses and between sentences
 • Most effective in stations with high background noise levels
 • Has adjustable delay and threshold
 • Does not improve communication capability
• A Monitor function included
The W2IHY 8 Band Equalizer (continued):

- Uses a parallel bank of 8, one-pole BPFs (centered at the above frequencies)
The W2IHY 8 Band Equalizer (continued):

Note:

- Filters are low Q (broadband)
- Bandwidths vary with center frequency

![Diagram of equalizer settings]

- All Gains = 0 dB
- All Gains = +16 dB
- All Gains = -16 dB
The W2IHY 8 Band Equalizer (continued):

Note: This circuit is optimized as an **Enhancer**, not a Notch Filter (ie, a -16 dB gain setting on one band does **not** create a -16 dB notch)
The W2IHY 8 Band Equalizer (continued):

Two types of 1 Pole BPFs:

Passive/Active:

Active RC:

For the W2IHY design:

- Resistors: 3.3 kΩ to 1 MΩ
- Capacitors: 300 pF to 0.18 uF
Signals below the noise floor cannot be recovered by use of an Equalizer!

- Negative SNR + Gain = Negative SNR
Where to Equalize?:

• At Transmitter: When the communications path uses only linear components (ie, no compressor, compander/expander, etc), an Equalizer can be placed anywhere along the path. However, since an Equalizer’s effectiveness is affected by SNR, the best place to put it is at the output of the microphone.

• At Receiver:
 • Theoretically, interchanging individual components of a “linear” system (ie, no compression, over-driven amps, etc,) will not affect the linear behavior of the system (ie, gain and phase)
 • Noise figure, IMDs, etc, will be affected
 • An Equalizer can be used at the receiver to improve copy of high SNR signals when:
 • They are missing critical frequencies
 • They there is a hearing deficiency on the receive end
 • Easy to do with the W2IHY 8 Band Equalizer:
 • Since the Equalizer is fully functional during receive:
 • Put a pair of headphones in the Equalizer monitor jack
 • Place the mic near the speaker
 • Turn the Noise Gate “off”
How an Equalizer is used depends on the application:

Music:
- Equalizers are used both to mitigate deficiencies in the electronics, and to emphasize or de-emphasize one or more instruments
- The Brain’s processor may, or may not be a factor in how the equalizer is used

Communications:
- The Brain uses different frequencies differently in the processing of speech waveforms => we should emphasize some ranges and de-emphasize others
- Speech spectrum can be divided into ranges:
 - Two band:
 - **Lows:** vowels
 - **Highs:** consonants
 - Three band:
 - **Lows:** heaviness, weight & big bottom 0-200 Hz
 - **Mids:** warmth & naturalness 400-800 Hz
 - **Highs:** brilliance, sparkle, clarity & presence 1600-3200 Hz
- For HF SSB communications, two commonly used equalization profiles:
Equalizer Settings:

• Initial settings (based on microphone and rig) come from W2IHY table
• Final settings:
 • Usually arrived at via on-the-air-testing with several other Hams & varying conditions
 • Depend on numerous variables:
 • Frequency content of speech
 • Frequency response of the microphone
 • Frequency response through the hardware (transmitter + receiver)
 • Hearing response at the receiving end (the other Hams that are helping with the settings)

Frequency content of speech varies with gender:

⇒ The optimum Equalizer shape is dependent upon the speaker
Speech frequency content varies with the microphone:

An **8 Band Equalizer** could make the bottom mic sound the same as the top mic (over the frequency range 50 Hz – 3.2 KHz)
Hearing frequency response is not flat:

- Varies with age
- Varies with gender
- Varies with sound level

Average “Equal Intensity (=1/Sensitivity)” Curves:

Note:
- This test assumes that your sound card & speakers have a flat frequency response
- Earphones recommended over computer speakers, but that didn’t work for me
Hearing frequency response is not flat (continued):

• My right ear looks reasonably close to the average response
Hearing frequency response is not flat (continued):

• My right ear looks reasonably close to the typical response
Hearing frequency response is not flat (continued):

• My left ear has a significant deficiency above 1 KHz

My Options:
1. Go monaural (ie, use only right ear)
 • The Brain is programmed for “Stereo” reception for direction info
 • Do we need “Stereo” reception for listening to speech from a speaker??
2. Use an Equalizer for my left ear only
Hearing frequency response is not flat (continued):

- My left ear after correction with an 8 Band Equalizer:

This correction resulted in a **significant** improvement in my ability to copy moderate to high SNR SSB signals with the left ear!
Hearing frequency response is not flat (continued):

• The solution=> **3 Band Equalizer** (can be built with 2-3 ICs and < 30 R’s & C’s)
 • Does *not* require all of the features/complexity of the W2IHY 8 Band Equalizer
Wrap-up:

• Traditionally, Equalization is used at the transmit end to improve HF SSB communications by optimizing the frequency content of the speech waveform at the ear of the receiving station by:
 • Compensating for the transmitter operator’s speech characteristics
 • Compensating for the transmitter microphone frequency response deficiencies
 • Can make an inexpensive mic sound like an expensive mic
 • Better matching the frequency content to the Brain’s response

• An Equalizer can be used at the receiving end (with moderate to high SNR signals) to improve interpretation of speech from stations with sub-optimal transmit waveforms and/or to mitigate the effects of hearing deficiencies on the receive end

• Equalizers cannot improve signals with negative SNRs

• The optimal settings for an Equalizer are very subjective and dependent upon:
 • The speech characteristics of the transmitter station operator
 • The frequency response of the specific hardware being used
 • The hearing characteristics of the receiving station operator