MFJ 259 Operation & Simplified Calibration

Bill Leonard NOCU

NAOTC 2014 TechFest

What Will Be Covered

Part 1: Operation

- •What is an MFJ 259
- What Does It Measure
- Impedance & Admittance
- How Does It Work
- How To Interpret The Measurement Results

Part 2: Calibration

- Simplified Calibration Instructions:
 - •MFJ 259 (out of production)
 - •MFJ 259B (out of production?)
 - •MFJ 259C may, or may not have the same CAL procedure as the 259B

Part 3: Testing (after presentation)

- Power out, harmonic levels, calibration & frequency stability
- Calibration as time permits

Part1: Operation

What Is An MFJ 259?

- •MFJ lists the MFJ 259 as a "HF/VHF SWR Analyzer"
- •AKA: "ONE PORT VECTOR NETWORK ANALYZER (VNA)"
 - Measures the electrical parameters of one port of a network
 Won't measure transmission parameters of a 2 port network
 - •Network = Electrical Circuit
 - A port is one complete signal path
 - "Vector" = measures both magnitude and phase

What Does The MFJ 259 Measure?

Analog Meters:

- Standing Wave Ratio (SWR)
- Resistance (259) or Impedance (259B/C)

Digital Display:

- MFJ 259: Frequency
- •MFJ 259B/C:

•Main Modes:

- •Impedance (resistance & reactance)
 - •Impedance of a transmission line
- Capacitance
- Inductance
- Frequency

Advanced Modes:

- Impedance (magnitude & phase)
- Return loss & reflection coefficient
- Distance to Fault (on transmission line)Velocity Factor of a transmission line
- Resonance
- Percentage Transmitted Power

MFJ 259B

What Does The MFJ 259 Measure?

Analog Meters:

- Standing Wave Ratio (SWR)
- •Resistance (259) or Impedance (259B/C)

•Digital Display:

- •MFJ 259: Frequency
- •MFJ 259B/C:
 - •Main Modes:
 - Impedance (resistance & reactance)
 - •Impedance of a transmission line
 - Capacitance
 - Inductance
 - Frequency

•Advanced Modes:

- Impedance (magnitude & phase)
- Return loss & reflection coefficient
- Distance to Fault (on transmission line)Velocity Factor of a transmission line
- Resonance
- Percentage Transmitted Power

Focus of this presentation

Impedance

- "The total opposition to alternating current by an electric circuit"
 - •Impedance = Z = Resistance + Reactance = R + jX
 - Measured in OHMS
 - •Z is a **COMPLEX** number!
 - •For most ham applications => ignore the j term
- •Equivalent Impedance Circuit:

Physical Circuit

R =>

Equivalent Impedance Circuit

$$Z_E = R_E + jX_E$$

If L & C are lossless: $R_E = R$
 $X_E = NET$ reactance = ?

To Calculate the Value of X_E

•To calculate X_F, must specify the **frequency (F)**

$$X_E = j2\pi FL + 1/(j2\pi FC) = j2\pi FL - j[1/(2\pi FC)]$$

- •At any specified frequency, if X_E is not zero, it is **EITHER**
 - •Inductive Reactance = $2\pi FL$, OR
 - •Capacitive Reactance = $-1/(2\pi FC)$

MFJ 259 Analog Meters

- •Two Analog Meters:
 - •First meter: **SWR**
 - •Second meter:
 - •MFJ 259: Resistance
 - •Instruction Manual:

"Resistance reading is accurate only if reactance equals zero."??

- •MFJ 259B/C: Impedance
 - •"Impedance" meter displays Z as one number
 - •"Impedance" is complex number composed of **two** numbers??
- •What does the second meter measure?

Magnitude of Impedance

Using the rules for COMPLEX mathematics:

Magnitude of a complex number
$$Z = |Z| = \sqrt{R^2 + X^2}$$

Example:

If
$$R_E = 50 \Omega$$
 and $X_E = 50 \Omega$, then,

Magnitude of
$$Z = |Z| = \sqrt{50^2 + 50^2} = 75 \Omega$$

 $\neq 100 \Omega$

- The second analog meter displays:
 - •259B: Magnitude of the impedance
 - Reactance does not need to be zero
 - •259: ?

Admittance

•Admittance =
$$Y = \frac{1}{Z}$$
 = Conductance + Susceptance = $G + jB$

- Measured in SIEMENS
 - •1 siemen = 1/(1 ohm) = 1 mho

Physical Circuit Equivalent Impedance Circuit Equivalent Admittance Circuit

Note: Both G, & B are a function of frequency

Admittance

•To express G & B in ohms, simply invert R_P & X_P:

$$R_p = 1/G$$
 ohms $X_p = 1/B$ ohms

Note: This is <u>NOT</u> equivalent to an Impedance Circuit

$$R_p \neq R_E$$

 $X_p \neq X_E$

Admittance

•To express G & B in ohms, simply invert R_p & X_p:

$$R_p = 1/G$$
 ohms $X_p = 1/B$ ohms

R_E & X_E are what is shown on the MFJ259B digital display

$$R_p \neq R_E$$

 $X_p \neq X_E$

How Does The MFJ 259 Measure Impedance

- Uses a conventional BRIDGE NETWORK to compare forward & reflected RF signals
 - Generates an RF signal
 - •Three **RF** voltages are rectified to generate three **DC** outputs
 - •V_Z is the voltage across the load
 - •V_r is the voltage indicating bridge balance
 - • V_S is the voltage across a series 50Ω resistor between the RF source and the load

Caution Notes

Four diodes are used to convert RF voltages to DC voltages

- Easily burned out (even when powered OFF)
 - DC voltage above 3 volts
 - •Electrostatic Discharge (ESD):
 - Discharge antennas before connecting to analyzer
 - Never touch antenna jack with your hand
 - •RF levels above ? (not specified)
- Wideband => Strong external signals can cause erroneous readings
 - •MFJ-731 Tunable Analyzer Filter \$100 (for use in HF bands)

Original MFJ 259

Original MFJ 259

MFJ 259B/C

Example 1 – 40M Dipole

What Does The MFJ 259B Measure?

$$F(SWR=1:1) = 6.0 MHz$$
:

Expected values:

X = j2πFL + 1/(j2πFC) = j49.4 +1/(j19.2x10-3) = j49.4 – j52.0
$$\cong$$
 j0
Z = R + jX = 50 +j0 = **50** Ω
Magnitude of Z = |**Z**| = $\sqrt{R^2 + X^2}$ = $\sqrt{50^2 + 0^2}$ = **50** Ω

$$F(SWR=1:1) = 6.0 MHz$$
:

Expected values:

X = j2πFL + 1/(j2πFC) = j49.4 +1/(j19.2x10-3) = j49.4 – j52.0
$$\cong$$
 j0
Z = R + jX = 50 +j0 = **50** Ω
Magnitude of Z = |**Z**| = $\sqrt{R^2 + X^2}$ = $\sqrt{50^2 + 0^2}$ = **50** Ω

F(SWR=1:1) = 6.0 MHz:

Expected values:

 $X = j2\pi FL + 1/(j2\pi FC) = j49.4 + 1/(j19.2x10-3) = j49.4 - j52.0 \approx j0$

 $Z = R + jX = 50 + j0 = 50 \Omega$

Magnitude of $Z = |Z| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 0^2} = 50 \Omega$

F(SWR=1:1) = 6.0 MHz:

Expected values:

 $X = j2\pi FL + 1/(j2\pi FC) = j49.4 + 1/(j19.2x10-3) = j49.4 - j52.0 \approx j0$

 $Z = R + jX = 50 + j0 = 50 \Omega$

Magnitude of $Z = |Z| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 0^2} = 50 \Omega$

F(SWR=1:1) = 6.0 MHz:

Expected values:

 $X = j2\pi FL + 1/(j2\pi FC) = j49.4 + 1/(j19.2x10-3) = j49.4 - j52.0 \approx j0$

 $Z = R + jX = 50 + j0 = 50 \Omega$

Magnitude of Z = $|\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 0^2} = \mathbf{50} \Omega$

F(SWR=1:1) = 6.0 MHz:

Expected values:

 $X = j2\pi FL + 1/(j2\pi FC) = j49.4 + 1/(j19.2x10-3) = j49.4 - j52.0 \approx j0$

 $Z = R + jX = 50 + j0 = 50 \Omega$

Magnitude of $Z = |\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 0^2} = \mathbf{50} \Omega$

VNA Results: SWR = 1.01 & Z = 49.9 - j0.3 ohms

$$F(SWR=2:1) = 8.8 MHz$$
:

Expected values:

$$X = j2\pi FL + 1/(j2\pi FC) = j72.4 + 1/(j28.2x10-3) = j72.4 - j35.5 = j36.9$$

Z = 50 + j36.9
Magnitude of $Z = |\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 36.9^2} = 62.1$

$$F(SWR=2:1) = 8.8 MHz$$
:

Expected values:

$$X = j2\pi FL + 1/(j2\pi FC) = j72.4 + 1/(j28.2x10-3) = j72.4 - j35.5 = j36.9$$

Z = 50 + j36.9

Magnitude of
$$Z = |\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 36.9^2} = 62.1$$

F(SWR=2:1) = 8.8 MHz:

Expected values:

 $X = j2\pi FL + 1/(j2\pi FC) = j72.4 + 1/(j28.2x10-3) = j72.4 - j35.5 =$ **j36.9 Z = 50 + j36.9**

Magnitude of $Z = |\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 36.9^2} = 62.1$

VNA Results: SWR = 2.0 & Z = 52.1 - j35.9 ohms

"Magnitude of Impedance" mode

Expected values:

$$Z = 50 + j36.9$$

Magnitude of $Z = |\mathbf{Z}| = \sqrt{R^2 + X^2} = \sqrt{50^2 + 36.9^2} = \mathbf{62.1}$ Phase of $Z = \operatorname{Arctan} \frac{X}{R} = \mathbf{36.4}$ degrees

Example 2 – 80M Vertical

Matching Network Design

http://designtools.analog.com/RFIMPD/

Matched 80M Vertical

Part2: Calibration

Important Info

- •ESD: Diode failures due to ESD is a common
 - Do not touch any part of the PC board (or antenna jack)
 - Always discharge antenna before connecting to 259
- Do not stress the wires to the battery holder
- •Do not place the 259 on or near metal objects during calibration
- Calibration may be sensitive to battery voltage
- •Wall warts:
 - •MFJ 259B:
 - •With 259B, internal jumper must be set correctly when using wall wart with Alkaline batteries

Items Needed for Simplified Calibration

- •For checking RF signal output:
 - 1. Spectrum analyzer or
 - 2. HF receiver with S meter and **fixed attenuation** (>60 dB)
 - Keep S meter below S9+10 dB
- •RF loads:
 - •MFJ 259: 50 & 100 ohms
 - •MFJ 259B: 12.5, 50, 75, & 200 ohms
 - •Easy to make your own load with stock resistors and PL 259s
 - •Use the smallest METAL FILM (1%) resistors you can find
 - •Radio Shack CARBON FILM resistors worked for me

- Philips screwdriver (#1 or #2)
- Very small screwdriver for alignment tool
 - "Non-metallic" is not necessary for adjusting potentiometers

How Good Are PL 259 Loads?

Calibration - First Step

Check RF output level and harmonic content

- Output level should be around 0 to +10 dBm
- Harmonics must be < -25 dBc (< -35 dBc desired)
 - Use of 2.7 ohm load recommended
 - I didn't see any difference with or without load

Calibration - Second Step

Check CAL accuracy FIRST with 50 & 75/100 ohms

If it ain't broke, don't fix it

Calibration - Third Step

Open case:

- Remove 8 screws on <u>sides</u> of cabinet
- MFJ 259B:
 - Remove batteries 1, 2, 9, & 10
 - Remove only the 2 screws on right side of battery tray
 - Remove battery tray
 - Replace batteries
 - Tape off battery tray contacts
 - Mark original settings with pen

MFJ 259 Calibration

•MFJ 259:

- •Full Calibration Includes:
 - Check output power and harmonic levels
 - Set frequency counter sensitivity (?)
 - Set AGC voltage
 - Set frequency band overlap
 - •SWR meter set with 100Ω load
 - •Resistance meter set with 50Ω load
- •Simplified Calibration:
 - •Check output power, harmonic levels, and stability on all bands
 - Adjust AGC pot if required
 - •SWR meter set with 100Ω load
 - •Resistance meter set with 50_Ω load

•References:

- 1) http://www.radioaficion.com/HamNews/reviews/accesorios/11341-mfj-259-calibrating.html
- 2) http://www.thiecom.de/ftp/mfj/mfj-249_calibration.pdf

MFJ 259 Simplified Calibration

Reference 1

Reference 2

Setting the A.G.C. voltage.

- 1) Range switch should be in the 113 17 range.
- 2) Tune display to read 165 166 MHz.
- 3) On back side of board measure the voltage on pin 2 of ICI. It should be 300 400 mV.
- 4) Check voltage on pin 3 of ICI and adjust R18 till voltage matches pin 2 or is within .003 mV of it Voltage on pin 3 shouldn't drop below that of pin 2 because unit may become unstable.

NOTE:

- •Setting the A.G.C. voltage affects:
 - Harmonic levels and
 - Stability (output frequency may become unstable)
- •The "Best" A.G.C. setting may be different from the above guidelines

259B Calibration

•MFJ 259B:

- •Full Calibration:
 - Check output power and harmonic levels
 - Adjust amplifier bias for minimum harmonic levels
 - Adjust VFO Ranges for band overlap
 - Calibration of Impedance & SWR at four different load values

•Simplified Calibration:

- Check output power and harmonic levels
- Calibration of Impedance & SWR at four different load values

•Reference:

3) http://www.w8ji.com/mfj-259b_calibration.htm (don't use factory instructions) Note: ohms shows up as W in the article (200 W = 200 Ω , not 200 watt)

MFJ 259B Simplified Calibration

- •Harmonic level (Bias) adjustment:
 - High harmonic levels degrade accuracy
 - •Be sure to adjust **R84** (not R89)
 - •Harmonic levels vary >30 dB while output level only varies 2-3 dB
 - •Using 2.2 Ω load or stub didn't make much difference

- Calibration involves settings based upon a "number"
 - •8 bit A/D converts DC voltages to a number between 0 and 255
 - Ref 3 confuses "digital number" and "bits"
 - •Ex: "voltage Vz in bits = $R_z/(50+R_z)$ * 255 bits"

Simplified calibration procedure:

- 1. Set digital display impedance readings at 12.5 and 200 ohms
- 2. Set digital display for SWR = 1.5 with 75 ohms
- 3. Set analog SWR meter for SWR = 1.5 with 75 ohms
- 4. Set the analog Impedance meter reading at 50 ohms with 50 ohms

Set up "TEST MODE" (This can be difficult)

To enter "Test Mode":

[] Turn power off.
[] Hold down <i>MODE</i> and <i>GATE</i> buttons while turning power on.
[] As display comes up, slowly (about 1 second period) rock between applying
finger-pressure on the MODE and GATE switches. The best method is to use
two fingers, rocking your hand from side-to-side to alternate your fingers
between the two buttons.
[] Confirm analyzer has entered test mode (it may take more than one try).
[] Using the MODE button, advance display to the R-S-Z screen (shown
below).
"Note: If you go past the R-S-Z screen, you can still see R-S-Z by pushing and holding the MODE button." WRONG (You need to start over)

R-S-Z Mode Digital Display

xx.xxx MHz Rxxx Sxxx Zxxx

1) Impedance Calibration:

Set Frequency to **14.000 MHz**Ignore "First Time Adjustments"

```
1a) [ ] Install 12.5-Ω load
[ ] Set R90 for Z=051
[ ] Set R73 for S=204
[ ] Set R53 for R=153*
```

R-S-Z Mode Digital Display

14.000 MHz R153 S204 Z051

^{*}This setting is a compromise between the 12.5 & 200 ohm loads. (ie, you cannot get R=153 for both loads). I set R=160 with 12.5 ohm load, which resulted in R=146 with 200 ohm load.

1) Impedance Calibration: (continued) 1b) [] Change Load to 200- Ω Set **R88** for **S=051** [] Set **R72** for **Z=204** [] R=* Repeat above steps (I didn't find this necessary) [] Change Load to 12.5- Ω [] Reset **R90** for **Z=051** [] Reset **R73** for **S=204** [] Reset **R53** for **R=153** [] Change Load to 200- Ω [] Verify or reset **R88** for **S=051** [] Verify or set R72 for Z=204 Verify or set R53 for near R=153

```
2) SWR Calibration (Digital):
   [ ] Change Load to 75-\Omega
   [ ] Set R89 for R=051
3) SWR Meter Calibration (Analog):
   Set R56 for SWR Meter reading of 1.5:1
4) Impedance Meter Calibration (Analog):
   Note: Error in W8JI instructions. Analyzer must be in
         "Impedance" mode to CAL Impedance meter!
   [ ] Cycle analyzer power OFF and then ON. Verify that
        analyzer is in "Impedance" mode.
   [ ] Change Load to 50-\Omega
   [ ] Set R67 for an Impedance Meter reading of 50-\Omega
```