MFJ 259
 Operation \& Simplified Calibration

Bill Leonard NOCU
NAOTC 2014 TechFest

What Will Be Covered

-Part 1: Operation

-What is an MFJ 259
-What Does It Measure

- Impedance \& Admittance
-How Does It Work
-How To Interpret The Measurement Results
-Part 2: Calibration
- Simplified Calibration Instructions:
-MFJ 259 (out of production)
-MFJ 259B (out of production?)
-MFJ 259C may, or may not have the same CAL procedure as the 259B
-Part 3: Testing (after presentation)
-Power out, harmonic levels, calibration \& frequency stability
-Calibration as time permits

Part1: Operation

What Is An MFJ 259?

-MFJ lists the MFJ 259 as a "HF/VHF SWR Analyzer" -AKA: "ONE PORT VECTOR NETWORK ANALYZER (VNA)"

- Measures the electrical parameters of one port of a network -Won't measure transmission parameters of a 2 port network
- Network = Electrical Circuit
- A port is one complete signal path
-"Vector" = measures both magnitude and phase

What Does The MFJ 259 Measure?

- Analog Meters:
- Standing Wave Ratio (SWR)
-Resistance (259) or Impedance (259B/C)
-Digital Display:
-MFJ 259: Frequency
-MFJ 259B/C:
-Main Modes:
- Impedance (resistance \& reactance)
-Impedance of a transmission line
-Capacitance
- Inductance
-Frequency
-Advanced Modes:
-Impedance (magnitude \& phase)
- Return loss \& reflection coefficient
- Distance to Fault (on transmission line)
- Velocity Factor of a transmission line
-Resonance

MFJ 259B

-Percentage Transmitted Power

What Does The MFJ 259 Measure?

-Analog Meters:

- Standing Wave Ratio (SWR)
-Resistance (259) or Impedance (259B/C)
-Digital Display:
-MFJ 259: Frequency
-MFJ 259B/C:
-Main Modes:
-Impedance (resistance \& reactance)
-Impedance of a transmission line
-Capacitance
- Inductance
-Frequency
-Advanced Modes:
-Impedance (magnitude \& phase)
-Return loss \& reflection coefficient
-Distance to Fault (on transmission line)
- Velocity Factor of a transmission line
-Resonance

Focus of this presentation
-Percentage Transmitted Power

Impedance

-"The total opposition to alternating current by an electric circuit" -Impedance = Z = Resistance + Reactance = R + jX

- Measured in OHMS
$\bullet Z$ is a COMPLEX number!
-For most ham applications => ignore the j term
-Equivalent Impedance Circuit:

Physical Circuit

Equivalent Impedance Circuit

$$
\begin{aligned}
& Z_{E}=R_{E}+j X_{E} \\
& \text { If } L \text { \& C are lossless: } R_{E}=R \\
& X_{E}=\underline{N E T} \text { reactance }=\text { ? }
\end{aligned}
$$

To Calculate the Value of X_{E}

-To calculate X_{E}, must specify the frequency (F)

$$
\mathrm{X}_{\mathrm{E}}=\mathrm{j} 2 \pi \mathrm{FL}+1 /(\mathrm{j} 2 \pi \mathrm{FC})=\mathrm{j} 2 \pi \mathrm{FL}-\mathrm{j}[1 /(2 \pi \mathrm{FC})]
$$

-At any specified frequency, if X_{E} is not zero, it is EITHER
-Inductive Reactance $=2 \pi \mathrm{FL}$, OR
-Capacitive Reactance $=-1 /(2 \pi \mathrm{FC})$

MFJ 259 Analog Meters

-Two Analog Meters:
-First meter: SWR

- Second meter:
-MFJ 259: Resistance
-Instruction Manual:
"Resistance reading is accurate only if reactance equals zero."??
-MFJ 259B/C: Impedance
-"Impedance" meter displays Z as one number
-"Impedance" is complex number composed of two numbers??
-What does the second meter measure?

Magnitude of Impedance

-Using the rules for COMPLEX mathematics:
Magnitude of a complex number $Z=|Z|=\sqrt{R^{2}+X^{2}}$
Example:
If $R_{E}=50 \Omega$ and $X_{E}=50 \Omega$, then,

$$
\begin{aligned}
& \neq 100 \Omega
\end{aligned}
$$

-The second analog meter displays:
-259B: Magnitude of the impedance
-Reactance does not need to be zero
-259: ?

Admittance

- Admittance $=\mathbf{Y}=\frac{\mathbf{1}}{\mathbf{Z}}=$ Conductance + Susceptance $=\mathbf{G}+\mathbf{j B}$
- Measured in SIEMENS
-1 siemen = $1 /(1$ ohm $)=1$ mho
Physical Circuit Equivalent Impedance Circuit Equivalent Admittance Circuit

$$
\begin{aligned}
& G=\Re(Y)=\frac{R}{R^{2}+X^{2}} \text { mhos } \\
& B=\Im(Y)=-\frac{X}{R^{2}+X^{2}} \text { mhos }
\end{aligned}
$$

Note: Both G, \& B are a function of frequency

Admittance

- To express G \& B in ohms, simply invert $R_{p} \& X_{p}$:

$$
\begin{aligned}
& R_{P}=1 / G \text { ohms } \\
& X_{P}=1 / B \text { ohms }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{P}} \neq \mathrm{R}_{\mathrm{E}} \\
& \mathrm{X}_{\mathrm{P}} \neq \mathrm{X}_{\mathrm{E}}
\end{aligned}
$$

Admittance

-To express G \& B in ohms, simply invert $R_{p} \& X_{p}$:

$$
\begin{aligned}
& R_{P}=1 / G \text { ohms } \\
& X_{P}=1 / B \text { ohms }
\end{aligned}
$$

$R_{E} \& X_{E}$ are what is shown on the MFJ259B digital display

How Does The MFJ 259 Measure Impedance

-Uses a conventional BRIDGE NETWORK to compare forward \& reflected RF signals

- Generates an RF signal
- Three RF voltages are rectified to generate three DC outputs
$-V_{Z}$ is the voltage across the load
$-V_{r}$ is the voltage indicating bridge balance
$-V_{S}$ is the voltage across a series 50Ω resistor between the RF source and the load

Caution Notes

-Four diodes are used to convert RF voltages to DC voltages

-Easily burned out (even when powered OFF)
-DC voltage above 3 volts
-Electrostatic Discharge (ESD):
-Discharge antennas before connecting to analyzer

- Never touch antenna jack with your hand
-RF levels above ? (not specified)
-Wideband => Strong external signals can cause erroneous readings
-MFJ-731 Tunable Analyzer Filter \$100 (for use in HF bands)

Original MFJ 259

Original MFJ 259

MFJ 259B/C

Example 1-40M Dipole

What Does The MFJ 259B Measure?

F (SWR=1:1) $=6.0 \mathrm{MHz}:$

Expected values:

$\mathrm{X}=\mathrm{j} 2 \pi \mathrm{FL}+1 /(\mathrm{j} 2 \pi \mathrm{FC})=\mathrm{j} 49.4+1 /(\mathrm{j} 19.2 \times 10-3)=\mathrm{j} 49.4-\mathrm{j} 52.0 \cong \mathrm{j} 0$
$Z=R+j X=50+j 0=50 \Omega$
Magnitude of $Z=|z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=\mathbf{5 0} \Omega$

What Does The MFJ 259B Measure? (continued) $F(S W R=1: 1)=6.0 \mathrm{MHz}:$

Expected values:
$X=j 2 \pi F L+1 /(j 2 \pi F C)=j 49.4+1 /(j 19.2 \times 10-3)=j 49.4-j 52.0 \cong j 0$
$Z=R+j X=50+j 0=50 \Omega$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=50 \Omega$

What Does The MFJ 259B Measure? (continued) $F(S W R=1: 1)=6.0 \mathrm{MHz}:$

Expected values:
$X=\mathrm{j} 2 \pi \mathrm{~F} 4+1 /(\mathrm{j} 2 \times \mathrm{FC})=\mathrm{j} 49.4+1 /(\mathrm{j} 19.2 \times 10-3)=\mathrm{j} 49.4-\mathrm{j} 52.0 \cong \mathrm{j} 0$
$Z=R+j X=50+j 0=50 \Omega$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=50 \Omega$

What Does The MFJ 259B Measure? (continued) $F(S W R=1: 1)=6.0 \mathrm{MHz}:$

Expected values:
$X=j 2 \pi F L+1 /(j 2 \pi F C)=j 49.4+1 /(j 19.2 \times 10-3)=j 49.4-j 52.0 \cong j 0$
$Z=R+j X=50+j 0=50 \Omega$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=50 \Omega$

What Does The MFJ 259B Measure? (continued) $F(S W R=1: 1)=6.0 \mathrm{MHz}:$

Expected values:
$X=j 2 \pi F L+1 /(j 2 \pi F C)=j 49.4+1 /(j 19.2 \times 10-3)=j 49.4-j 52.0 \cong j 0$
$Z=R+j X=50+j 0=50 \Omega$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=50 \Omega$

SWR

IMPEDANCE

What Does The MFJ 259B Measure? (continued) $F(S W R=1: 1)=6.0 \mathrm{MHz}:$

Expected values:

$$
\begin{aligned}
& X=j 2 \pi F L+1 /(j 2 \pi F C)=j 49.4+1 /(j 19.2 \times 10-3)=j 49.4-j 52.0 \cong j 0 \\
& Z=R+j X=50+j 0=50 \Omega \\
& \text { Magnitude of } Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+0^{2}}=50 \Omega \\
& \quad \text { VNA Results: SWR }=1.01 \& Z=49.9-j 0.3 \text { ohms }
\end{aligned}
$$

What Does The MFJ 259B Measure? (continued)

F (SWR=2:1) $=8.8 \mathrm{MHz}$:

Expected values:

$\mathrm{X}=\mathrm{j} 2 \pi \mathrm{FL}+1 /(\mathrm{j} 2 \pi \mathrm{FC})=\mathrm{j} 72.4+1 /(\mathrm{j} 28.2 \times 10-3)=\mathrm{j} 72.4-\mathrm{j} 35.5=\mathrm{j} 36.9$
Z $=50+\mathrm{j} 36.9$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+36.9^{2}}=62.1$

What Does The MFJ 259B Measure? (continued)

 F (SWR=2:1) $=8.8 \mathrm{MHz}$:
Expected values:

$\mathrm{X}=\mathrm{j} 2 \pi \mathrm{FL}+1 /(\mathrm{j} 2 \pi \mathrm{FC})=\mathrm{j} 72.4+1 /(\mathrm{j} 28.2 \times 10-3)=\mathrm{j} 72.4-\mathrm{j} 35.5=\mathrm{j} 36.9$
Z $=50$ + $\mathbf{j} 36.9$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+36.9^{2}}=62.1$

What Does The MFJ 259B Measure? (continued)

 F (SWR=2:1) $=8.8 \mathrm{MHz}$:
Expected values:

$\mathrm{X}=\mathrm{j} 2 \pi \mathrm{FL}+1 /(\mathrm{j} 2 \pi \mathrm{FC})=\mathrm{j} 72.4+1 /(\mathrm{j} 28.2 \times 10-3)=\mathrm{j} 72.4-\mathrm{j} 35.5=\mathrm{j} 36.9$
Z $=50+\mathrm{j} 36.9$
Magnitude of $Z=|Z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+36.9^{2}}=62.1$ VNA Results: SWR $=2.0$ \& $\mathrm{Z}=52.1$ - $\mathbf{j} 35.9$ ohms

What Does The MFJ 259B Measure? (continued)

"Magnitude of Impedance" mode

Expected values:

Z = 50 + j36.9
Magnitude of $Z=|z|=\sqrt{R^{2}+X^{2}}=\sqrt{50^{2}+36.9^{2}}=62.1$
Phase of $Z=\operatorname{Arctan} \frac{X}{R}=36.4$ degrees

Example $2-80 \mathrm{M}$ Vertical

Matching Network Design

http://designtools.analog.com/RFIMPD/

ANALOG	Enter keywords or part \#	Search	$\begin{aligned} & \text { Parametric } \\ & \text { Product Search } \end{aligned}$	Cross-Reference and Obsolete Search	$\begin{array}{r} \text { Log in } \\ \text { WW. View Cart } \end{array}$
PRODUCTS	APPLICATIONS	RESOURCES \& TOOLS	SAMPLE \&	URCHASE SUPPORT	\checkmark myAnalog

ADI Home >

RF IMPEDANCE MATCHING CALCULATOR

Matched 80M Vertical

Part2: Calibration

Important Info

-ESD: Diode failures due to ESD is a common
-Do not touch any part of the PC board (or antenna jack)

- Always discharge antenna before connecting to 259
- Do not stress the wires to the battery holder
-Do not place the 259 on or near metal objects during calibration
-Calibration may be sensitive to battery voltage
-Wall warts:
-MFJ 259B:
-With 259B, internal jumper must be set correctly when using wall wart with Alkaline batteries

Items Needed for Simplified Calibration

-For checking RF signal output:

1. Spectrum analyzer or
2. HF receiver with S meter and fixed attenuation ($>60 \mathrm{~dB}$)

- Keep S meter below S9+10 dB
-RF loads:
-MFJ 259: 50 \& 100 ohms
-MFJ 259B: 12.5, 50, 75, \& 200 ohms
-Easy to make your own load with stock resistors and PL 259s
-Use the smallest METAL FILM (1\%) resistors you can find
-Radio Shack CARBON FILM resistors worked for me

-Philips screwdriver (\#1 or \#2)
- Very small screwdriver for alignment tool
-"Non-metallic" is not necessary for adjusting potentiometers

How Good Are PL 259 Loads?

Calibration - First Step

Check RF output level and harmonic content

- Output level should be around 0 to +10 dBm
- Harmonics must be <-25 dBc (<-35 dBc desired)
- Use of 2.7 ohm load recommended
- I didn't see any difference with or without load

Calibration - Second Step

Check CAL accuracy FIRST with 50 \& 75/100 ohms

- If it ain't broke, don't fix it

Calibration - Third Step

Open case:

- Remove 8 screws on sides of cabinet
- MFJ 259B:
- Remove batteries 1, 2, 9, \& 10
- Remove only the 2 screws on right side of battery tray
- Remove battery tray
- Replace batteries
- Tape off battery tray contacts
- Mark original settings with pen

MFJ 259 Calibration

-MFJ 259:
-Full Calibration Includes:
-Check output power and harmonic levels
-Set frequency counter sensitivity (?)

- Set AGC voltage
-Set frequency band overlap
-SWR meter set with 100Ω load
-Resistance meter set with 50Ω load
-Simplified Calibration:
-Check output power, harmonic levels, and stability on all bands
-Adjust AGC pot if required
-SWR meter set with 100Ω load
-Resistance meter set with 50Ω load
-References:

1) http://www.radioaficion.com/HamNews/reviews/accesorios/11341-mfj-259-calibrating.html
2) http://www.thiecom.de/ftp/mfj/mfj-249_calibration.pdf

MFJ 259 Simplified Calibration

MFJ 259 Simplified Calibration - continued

Reference 1

9. C:\Users\bill\Desktop\MFJ 259\MFJ-259 Calibrating Radioaficion Ham Radio.html

File Edit View Favorites Tools Help

\times V Norton	Q	Safe Search	\checkmark	THIS PAGE IS SAFE	(3) ACCESS	SHARE VIA

Step 1. Check Battery Voltage
Remove cover from analyzer and check battery voltage with the power switch in the "on" position. See Figure 2 for location of measurement points. The battery voltage should be 11 vdc . minimum. It's probably time to install new batteries any how.

Step 2. Set AGC Levels
Confusing
With no load connected to analyzer set frequency to approximately 10 MHz . Measure dc voltage at pins 2 to ground and 3 to ground, on the 14 pin IC. Using the right hand potentiometer, set voltage if necessary to 0.4 vdc . (acceptable range is 0.3 to 0.5 vdc .).

Step 3. Adjust 2:1 SWR Setting
Connect the 100 ohm terminator plug on the output connector. Set top potentiometer so that the analyzer indicates 2:1 swr.

Step 4. Adjust 50 Ohm Setting
Connect the 50 ohm terminator plug to the analyzer. Set middle potentiometer so that the analyzer indicates 50 0 hms on the resistance meter. This should correspond with an indication of $1: 1 \mathrm{swr}$. This adjustment can be touchy.

Step 5. Check Top Frequency
With the 50 ohm terminator still connected, set the frequency to 170 MHz and check the swr indication; it should be close to $1: 1$ but the resistance indication may be somewhat inaccurate.

Step 6. Check All Frequency Bands
With the 50 ohm terminator still in place, sweep frequency over entire frequency range of all bands and observe the swr and resistance indications. The swr indication should be very near 1:1 and the resistance indication should be very near 50 ohms.

MFJ 259 Simplified Calibration - continued

Reference 2

Setting the A.G.C. voltage.

1) Range switch should be in the 113-17 range.
2) Tune display to read $165-166 \mathrm{MHz}$.
3) On back side of board measure the voltage on pin 2 of ICI. It should be 300-400 mV.
4) Check voltage on pin 3 of ICl and adjust R18 till voltage matches pin 2 or is within . 003 mV of it Voltage on pin 3 shouldn't drop below that of pin 2 because unit may become unstable.

NOTE:

-Setting the A.G.C. voltage affects:
-Harmonic levels and
-Stability (output frequency may become unstable)
-The "Best" A.G.C. setting may be different from the above guidelines

MFJ 259 Simplified Calibration - continued

File Edit View Favorites Tools Help
x Norton Q MFF-259 Calibrating Radiooficion Ham Rad Safe Search
$\int_{\text {SAFE }}^{\text {This }}$ACCESS
VAULT
CH SHAREVT
CH SHAREVT

Step 6. Check All Frequency Bands
With the 50 ohm terminator still in place, sweep frequency over entire frequency range of all bands and observe the swr and resistance indications. The swr indication should be very near 1:1 and the resistance indication should be very near 50 ohms.

Summary

1) Set SWR meter for $2: 1$ reading with 100Ω load
2) Set Resistance meter for 50Ω reading with 50Ω load
This procedure works well assuming that the analyzer is in otherwise good condition. If after carefully performing the preceding procedures, your unit is still not operating properly, consider sending the unit back to MFJ for repairs. It has been my experience that they give good service at reasonable prices.

	Step 6. Check All Frequency Bands

should be very near 50 ohms.

259B Calibration

-MFJ 259B:
-Full Calibration:
-Check output power and harmonic levels
-Adjust amplifier bias for minimum harmonic levels
-Adjust VFO Ranges for band overlap
-Calibration of Impedance \& SWR at four different load values
-Simplified Calibration:
-Check output power and harmonic levels
-Calibration of Impedance \& SWR at four different load values
-Reference:
3) http://www.w8ji.com/mfj-259b_calibration.htm (don't use factory instructions)

Note: ohms shows up as W in the article ($200 \mathrm{~W}=200 \Omega$, not 200 watt)

MFJ 259B Simplified Calibration

-Harmonic level (Bias) adjustment:
-High harmonic levels degrade accuracy
-Be sure to adjust R84 (not R89)

- Harmonic levels vary >30 dB while output level only varies 2-3 dB
- Using 2.2Ω load or stub didn't make much difference

MFJ 259B Simplified Calibration - continued

-Calibration involves settings based upon a "number"
$\bullet 8$ bit A/D converts DC voltages to a number between 0 and 255
-Ref 3 confuses "digital number" and "bits"
-Ex: "voltage Vz in bits = $\mathrm{R}_{\mathrm{z}} /\left(50+\mathrm{R}_{\mathrm{z}}\right)$ * 255 bits"

MFJ 259B Simplified Calibration - continued

Simplified calibration procedure:

1. Set digital display impedance readings at 12.5 and 200 ohms
2. Set digital display for $\operatorname{SWR}=1.5$ with 75 ohms
3. Set analog SWR meter for SWR $=1.5$ with 75 ohms
4. Set the analog Impedance meter reading at 50 ohms with 50 ohms

MFJ 259B Simplified Calibration - continued

Set up "TEST MODE" (This can be difficult)

To enter "Test Mode":

[] Turn power off.
[] Hold down MODE and GATE buttons while turning power on.
[] As display comes up, slowly (about 1 second period) rock between applying finger-pressure on the MODE and GATE switches. The best method is to use two fingers, rocking your hand from side-to-side to alternate your fingers between the two buttons.
[] Confirm analyzer has entered test mode (it may take more than one try).
[] Using the MODE button, advance display to the R-S-Z screen (shown below).
"Note: If you go past the R-S-Z screen, you can still see $\mathrm{R}-\mathrm{S}-\mathrm{z}$ by pushing and holding the MODE button." $\}$ WRONG (You need to start over)

R-S-Z Mode Digital Display

xx.xxx MHz

Rxxx Sxxx Zxxx

MFJ 259B Simplified Calibration - continued

MFJ 259B Simplified Calibration - continued

1) Impedance Calibration:

Set Frequency to 14.000 MHz
Ignore "First Time Adjustments"
1a) [] Install 12.5- Ω load
[] Set R90 for Z=051
[] Set R73 for $\mathbf{S = 2 0 4}$
[] Set R53 for R=153*
*This setting is a compromise between the 12.5 \& 200 ohm loads. (ie, you cannot get $R=153$ for both loads). I set $R=160$ with 12.5 ohm load, which resulted in $R=146$ with 200 ohm load.

R-S-Z Mode Digital Display

14.000 MHz

R153 S204 Z051

MFJ 259B Simplified Calibration - continued

1) Impedance Calibration: (continued)

1b) [] Change Load to 200- Ω
[] Set R88 for S=051
[] Set R72 for Z=204
[] R=*
Repeat above steps (I didn't find this necessary)
[] Change Load to $12.5-\Omega$
[] Reset R90 for $\mathbf{Z = 0 5 1}$
[] Reset R73 for $\mathbf{S = 2 0 4}$
[] Reset R53 for R=153
[] Change Load to 200- Ω
[] Verify or reset R88 for $\mathbf{S = 0 5 1}$
[] Verify or set R72 for Z=204
[] Verify or set R53 for near R=153

MFJ 259B Simplified Calibration - continued
2) SWR Calibration (Digital):
[] Change Load to $75-\Omega$
[] Set R89 for R=051
3) SWR Meter Calibration (Analog):
[] Set R56 for SWR Meter reading of 1.5:1
4) Impedance Meter Calibration (Analog):

Note: Error in W8JI instructions. Analyzer must be in "Impedance" mode to CAL Impedance meter!
[] Cycle analyzer power OFF and then ON. Verify that analyzer is in "Impedance" mode.
[] Change Load to $\mathbf{5 0}-\Omega$
[] Set R67 for an Impedance Meter reading of 50- Ω

