Kirchhoff's and Ohms Law

Larry Weinstein, KØNA

Electrical Safety

- Working on modern electronics is generally quite safe
- Exceptions
 - High powered amplifiers
 - 2,000 to 4,000 Volts
 - Tube type equipment
 - Receiver voltages are typically 350 Volts
 - Transmitter voltages are typically 750 Volts
 - Power lines
 - 2 Killed a couple of years ago
 - Three People Killed While Erecting Antenna (ARRL News letter) At approximately 8:40 PM on Monday, October 12, a man, woman and their 15 year old son were killed while trying to erect a 50 foot vertical antenna at the home of the man's mother, Barbara Tenn, KJ4KFF, in Palm Bay, Florida. The deceased were not licensed amateurs.
- Video

Kirchhoff's Law

- The sum of all the voltages around a loop equal to zero
 - You must go around the loop in one direction
 - The black lead is the reference voltage
 - The red lead is the measured voltage
 - The sum of the measured will equal zero
- Example: Skiing a loop
 - Height of the lift-sum of the drop of the trails back to the base=0
 - The altitude gained and lost in a complete loop is zero
 - Voltage (potential difference) is equivalent to change in elevation

Ohm's Law

• Voltage =Current X Resistance

• Cover the unknown to get the formula

• Power=Volts X Current

Application Charging a 7.2 volt NiMD battery pack

- Rated at 2,000 ma-hr
 - Charge at .1 X 2,000 = 200ma
- Power supply is 13.8 Volts
- Kirchhoff's law
 - Power supply + resistor+diode+battery=0
 - 13.8 -V resistor -.6 -7.2 =0
 - Resistor voltage = 6 Volts
- Ohm's law
 - Resistance=6 volts / .200 Amps =30 Ohms
- Power on the resistor
 - Power =.2 amps X 6 Volts =1.2 Watts

Options

- A 33 Ohm 1.5 Watt resistor
- 3 10 Ohm .5 Watt resistors in series
 - R total = R1 + R2 + R3
- 3 100 Ohm .5 Watt resistors in parallel
 - 1/R total = 1/R1 + 1/R2 + 1/R3
 - On a calculator the key strokes are:
 - 100(1/x) + 100(1/x) + 100(1/x) = 1/x Your answer = 33.3
- Test the circuit !

Assumptions

- Battery voltage is 7.2
- No resistance in the amp meter
 - An ideal amp meter has zero resistance
 - What happens if we forget to change the scale and try to measure voltage
 - Video
- No resistance in the power supply
 - Check the battery eliminator in the next example

Using a Battery Eliminator

- Specifications
 - Output 9 Volts
 - Current 200 ma
- Open circuit voltage - 14.2
- Voltage with a 100 Ohm load
 - 11.1
- Internal resistance
 - Current in the 100 Ohm resistor = 11.1/100 = .111 Amps
 - Voltage drop internal = 14.2 11.1 = 3.1 Volts
 - Resistance internal = 3.1 volts / .111 Amps = 27.9 Ohms
- Current into the battery with no resistor
 - Internal voltage drop =14.2 7.8 = 6.4
 - Current = 6.4 Volts / 27.9 Ohms = .229 Amps or 229 ma

Volt Meters

- Ideal volt meter
 - Infinite resistance
- Real volt meters
 - Draw power from a circuit
- Potential problems
 - Can lower the measured voltage due to current draw
 - Example
 - Many schematics will specify a Ohms per Volt meter
 - Resistance equals the Ohms per Volt times the meter scale
 - For example 10,000 Ohms per Volt and the 100 Volt scale =1,000,000 Ohms
 - Some meters have a fixed resistance like 10 M Ohms

Capacitive Discharge

- Capacitors can hold a charge a long time
 - Extremely high currents are possible
 - Potential hazard
- Vaporized copper!
 - Example
 - The copper can keep an arc going a long time
 - In high power circuits it can coat eyes and skin!
 - In low power circuits it can plate out on the cold surface of a fuse leaving you with no protection!

Inductive Kick

- Inductance stores energy in a magnetic field
- Inductance tries to keep the current flowing
- Interruption of the current can create very high voltages that can damage equipment
 - Example
 - Typical failures:
 - mobile radios when you start a car
 - switching transistors feeding a relay

Questions