The Fabulous Dipole

Ham Radio’s Most Versatile Antenna
What is a Dipole?

• Gets its name from its two halves
 – One leg on each side of center
 – Each leg is the same length
• It’s a balanced antenna
 – The voltages and currents are balanced across each leg
 – Does not need a counterpoise or ground radials
• At resonance, the total antenna length is one-half design frequency wavelength
• One of the simplest and effective antennas
The Dipole

Antenna total length
468/freq. in mhz
Approximate Total Length for Half-wave Dipoles

<table>
<thead>
<tr>
<th>Band</th>
<th>Freq., Mhz</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28.4</td>
<td>16” 6”</td>
</tr>
<tr>
<td>12</td>
<td>24.9</td>
<td>18” 10”</td>
</tr>
<tr>
<td>15</td>
<td>21.1</td>
<td>22” 2”</td>
</tr>
<tr>
<td>17</td>
<td>18.1</td>
<td>25” 10”</td>
</tr>
<tr>
<td>20</td>
<td>14.1</td>
<td>33” 2”</td>
</tr>
<tr>
<td>30</td>
<td>10.1</td>
<td>46” 4”</td>
</tr>
<tr>
<td>40</td>
<td>7.1</td>
<td>65” 11”</td>
</tr>
<tr>
<td>60</td>
<td>5.2</td>
<td>89’ 7”</td>
</tr>
<tr>
<td>80</td>
<td>3.6</td>
<td>130’</td>
</tr>
<tr>
<td>160</td>
<td>1.8</td>
<td>260’</td>
</tr>
</tbody>
</table>
Typical Construction Materials

• #14 or #12 gauge wire for the legs
 – Copperweld
 – Stranded
 – Do NOT use typical solid copper wire as it will stretch and go off design frequency
 – For short term use, the legs can be #18 or #16 gauge wire

• The feedline can be coax or twin-lead
 – If coax is used, a balun is desirable at feed point
Typical Dipole Characteristics

• Feed point resistance
 – In free space, – 72 ohms
 – Above real ground – 30 to 70 ohms
• Reactance at feed point
 – Capacitive if too long
 – Inductive if too short
 – Null out by adding the opposite reactance
• At resonance, only resistance – no reactance
More Dipole Characteristics

• Bandwidth – the amount of frequency between the 2:1 SWR points
 – Narrow at low frequencies
 (100 khz @ 3.6 mhz - entire band @ 14.2 mhz)

• Take Off Angles
 – The angle of maximum radiation in the horizontal
 – Depends upon height (wavelength) above RF ground (not the ground surface)
 – The higher above RF ground, the lower the take off angle

• Reduced man-made noise reception
Feed Point Resistance at Various Heights Above RF Ground

Fig 1—Variation in radiation resistance of vertical and horizontal half-wave antennas at various heights above flat ground. Solid lines are for perfectly conducting ground; the broken line is the radiation resistance of horizontal half-wave antennas at low height over real ground.

Source: *Antenna Handbook*, 20th ed., pg. 3-2
SWR – 2:1 Bandwidth

The frequency between the 2:1 SWR frequency points
3.6 mhz Dipole @ 30 ft.
Eznec 4.0 Plot

Freq: 3.665 MHz
SWR: 2.01
Z: 40.34 + j 90.52 ohms
Refl Coeff: 0.3357 at 88.89 deg.

Source # 1
Z0: 50 ohms
14.1 mhz Dipole @ 30 ft.
Eznec 4.0 Plot

Freq: 14 MHz
SWR: 1.7
Z: 79.09 - j17.47 ohms
Refl Coeff: 0.2605 at -23.27 deg.

Source # 1
Z0: 50 ohms
Take Off Angles

• The angle above antenna horizontal that as the greatest gain.

• Also important is the -3 db “beam width”
 – The degrees of take off angles between the maximum gain and -3 db gain points
Take Off Angle @ 3.6 mhz
30 feet above real ground

Note: This is an NVIS pattern.
Take Off Angle @ 14.1 mhz
30 feet above real ground
Take Off Angle @ 14.1 mhz
40 feet above real ground
Multiband Dipole

- Total length of one-half wavelength at lowest operating frequency
- Use current balun
- Must use antenna tuner – lower losses for tuner which has air inductor rather than toroid inductor
- Install with feedpoint as high as possible (except for NVIS operation)
Feedlines

• **Coax**
 – Either 50 ohm or 75 ohm impedance
 – RG-58 has too high of losses; RG-8 and 8X is preferred
 – Attached to antenna using 1:1 current balun
 – For multiband use, use antenna tuner

• **Open line**
 – Generally 300 ohm or 450 ohm
 – Attach directly to antenna
 – Use a 4:1 balun at antenna tuner
Typical Open-Wire Feed Setup

Figure 1—The classic open-wire feed line dipole antenna is easy to install and offers surprising performance on several bands. You can install it in almost any configuration; it doesn’t have to be strung in the traditional horizontal “flat top” shown here.

Source: QST, March 2004 pg. 65
Other Configurations for a Dipole Antenna

- Inverted – Vee
- Folded Dipole
- Sloper Dipole
- G5RV
- Coaxial dipole
- Two Band, Single Feed Dipole
- Inverted L Dipole
Inverted-Vee Dipole Antenna

Guy wire to ground

1:1 Balun or Insulator

Guy wire to ground

Feedline

Insulator

Insulator
Inverted – Vee Dipole Antenna

– Apex up as high as possible
– Keep angle between legs over 90°
– Use insulators at far end of legs
– Far end of legs should be at least 2 feet above the actual ground, higher is no problem
– Impedance closer to 50 ohms
– Lower take-off angle of radiation than horizontal dipole
Inverted-Vee Dipole Antenna

- Total Field

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation Plot</td>
<td></td>
</tr>
<tr>
<td>Azimuth Angle</td>
<td>0.0 deg.</td>
</tr>
<tr>
<td>Outer Ring</td>
<td>6.48 dBi</td>
</tr>
<tr>
<td>Slice Max Gain</td>
<td>6.48 dBi @ Elev Angle = 34.0 deg.</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>42.1 deg.; -3dB @ 15.8, 57.9 deg.</td>
</tr>
<tr>
<td>Sidelobe Gain</td>
<td>6.46 dBi @ Elev Angle = 146.0 deg.</td>
</tr>
<tr>
<td>Front/Sidelobe</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>Cursor Elev Gain</td>
<td>34.0 deg.</td>
</tr>
<tr>
<td>Gain</td>
<td>6.46 dBi</td>
</tr>
</tbody>
</table>

14 MHz
Inverted – Vee Folded Dipole

- #14 Gauge copper wire
- 300 – 450 ohm twin lead
- Insulator
- 4:1 Current balun
- 75-50 ohm coax to antenna tuner
Folded Dipole

- Somewhat greater 2:1 SWR bandwidth
- Feedpoint impedance approximately 300 ohms
- Ideal for open line feed
- Use 4:1 current balun and antenna tuner
- If you use coax, install balun at antenna feed point
- Spacing between folded legs not very important – 2-3 inches and greater
Sloping Dipole

- Support
- Antenna Legs
- Balun or insulator
- Feedline
- Insulator
- Guy to ground
- Direction of maximum radiation
Sloping Dipole

• More RF energy in direction of slope
• Feedline at 90° from antenna
• Feed point resistance – \(\approx 74 \) ohms
• High end as high as possible
• Use insulators an high and low end
Sloping Dipole

- **Total Field**

Results:

- **Elevation Plot:**
 - Azimuth Angle: 35.0 deg.
 - Outer Ring: 4.63 dBi

- **3d Max Gain:**
 - 4.63 dBi

- **Slice Max Gain:**
 - 4.63 dBi @ Elev Angle = 40.0 deg.

- **Beamwidth:**
 - 105.3 deg.; ~20dBi @ 12.7, 118.0 deg.

- **Sidelobe Gain:**
 - < -100 dBi

- **Front/Sidelobe:**
 - > 100 dB

Configurations:

- Cursor Elev: 40.0 deg.
- Gain: 4.63 dBi
- 0.0 dBmax
- 0.0 dBmax3D

Frequency:

14 MHz
G5RV Dipole

Fig. 1

Source: http://www.cebik.com/wire/g5rv.html
G5RV Dipole

- Multi-band dipole
- Use 1:1 current balun at end of twin lead feedline
- Coax to antenna tuner any length
- Great for inverted-vee installation
- Have twin lead run perpendicular to antenna
Coaxial Dipole – Double Bazooka

Coaxial Dipole – Double Bazooka

• Supposed to give more 2:1 SWR bandwidth, but only marginally
• Some technicians say the antenna performs better than a traditional dipole, but all mathematical analyses say “no”
• “Cross-over Double Bazooka” does give somewhat more 2:1 SWR bandwidth
Two Band, Single Feed Dipole
Two Band, Single Feed Dipole

• Make a 40 meter dipole and feed with twin lead or balun and coax
• Make a 20 meter dipole and attach at same feed as 40 meter dipole
• 40 meter operation has very high impedance for 20 meter dipole so all energy to 40 meter dipole
• 20 meter operation has very high impedance for 40 meter dipole so all energy to 20 meter dipole
Inverted L Dipole

Inverted L Dipole

• An antenna that is part vertical and part horizontal
• If fed in the center or at the base of the antenna, no radials or counterpoise are necessary
• Gives a good low take-off from the vertical portion and a high take-off angle from the horizontal portion – although $\frac{1}{2}$ power to each leg’s radiation
• Feed point is about 65 ohms resistance for antenna at resonance
Making and Adjusting A Simple Dipole

1. Calculate the total length using the formula: 468/Freq. in mhz, or 468/7.1 = 65 ft. 11”.

2. Each leg is then 32 ft. 11.5”; start by cutting each leg to 34 ft. 6”.

3. Permanently attach each leg to the center insulator or balun.

4. Loop 6” of wire the through the far end insulator and twist around leg.

5. Attach feed line and elevate the dipole in place.
Making and Adjusting
A Simple Dipole with SWR Meter

6. Measure dipole SWR at design frequency. SWR will be high. Dipole resonance is lower in frequency (dipole too long).

7. Lower dipole and cut off 3” from each leg. Raise and repeat SWR measurement.

8. Repeat 7. until dipole has an SWR of 1.5:1 or less. As the SWR approaches 1:1, cut off less from each leg per adjustment.

9. When the dipole is adjusted, without affecting length, twist the wire passing through the end insulator around leg and solder.

10. Re-elevate antenna and enjoy!
Making and Adjusting A Simple Dipole with Antenna Analyzer

1. Calculate to total length using the formula: 468/Freq. in mhz, or $468/7.1 = 65 \text{ ft. 11”}$.
2. Each leg is then 32 ft. 11.5”; start by cutting each leg to 34 ft. 6”.
3. Permanently attach each leg to the center insulator or balun.
4. Loop the far end onto the insulator.
5. Attach feed line and elevate the dipole in place.
Making and Adjusting A Simple Dipole with Antenna Analyzer

6. Attach analyzer to feedline and tune for resonance (where reactance is zero).
7. Multiple leg length by two and by frequency on analyzer. (should be 425-490)
8. Divide the this number by your design frequency. This is the total antenna length. Divide by 2 for each leg length.
9. Lower antenna and cut leg to calculated length. Re-elevate and confirm.
10. If SWR is less than 1.5:1, solder leg ends around insulator, re-elevate and enjoy!
Final Thoughts About Dipoles

• They are forgiving and have many variations
• They give excellent performance for their simplicity, are easy to build, and fun for experimentation.
• Two horizontal parallel dipoles about 0.15 to 0.2 wavelengths apart to form a two-element yagi.
• Inverted-vee’s can also be constructed to be 0.15 to 0.2 wavelengths apart to form a two-element “yagi.”
References

Devoldere, John, ON4UN, ON4UN’s Low Band DXing, The ARRL, Inc., Newington, CT, 1999-2002

Hall, Jerry, K1TD, “The Search for a Simple Broadband 80-Meter Dipole,” QST, April 1983, pp. 22-27

Healey, James, NJ2L, “Antenna Here is a Dipole,” QST, June 1991, pp. 23-26
More References

Reed, Dana, KD1CW, editor, *ARRL’s Wire Antenna Classics*, The ARRL, Inc., Newington, CT, 1999-2005
