Using EZNEC To Compare Antennas Part 2

Bill Leonard NOCU

Topics

- How polarization affects antenna performance
- How ground type affects antenna performance

•Initially, most signals from the dipole were more than 12 dB stronger than signals from the vertical

- •Initially, most signals from the dipole were more than 12 dB stronger than signals from the vertical
- After improving the radial system, signals from the dipole are still
 6 dB to 20+ dB stronger than signals from the vertical
 (95% of the time)

Verticals radiate equally poorly in all directions!

Vertically polarized antennas over lossy ground radiate equally poorly in all directions!

Vertically polarized antennas over lossy ground radiate equally poorly in all directions!

- •Over <u>perfect</u> ground, a vertially polarized antenna can have higher peak gain than the same antenna horizontally polarized
- •Over typical <u>lossy</u> (ie, not salt water) grounds:
 - Horizontally polarized antennas have 4.5-7 dB of ground reflection gain (GRG)

•Vertically polarized antennas have GRG<3 dB (often <0 dB)
 •Rule of Thumb: horizontal polarization has a
 ~6 dB GRG advantage over vertical polarization
 over lossy grounds

What Is "Ground"

•There are two different "RF grounds" that affect antenna performance

What Is "Ground"

•Reactive Near Field:

•Magnetic field dominates over the Electric field

- •Energy storage, but <u>NO radiation</u> of electromagnetic energy
- Affects antenna radiation <u>impedance & efficiency</u>

•Radiating Far Field:

- •Equal energy in Electric and Magnetic fields
- <u>Radiation</u> of electromagnetic energy
- Affects antenna pattern (gain & shape)
 - •Adding more 1/4 λ radials won't improve gain or pattern
- •This is the field modelled by all NEC programs

Horizontal or Vertical Polarization?

Height above real ground = 50 feet

Compared to a Horizontal beam, the Vertical beam (over lossy ground) has:

- •5.66 dB less peak gain
- <u>No</u> low angle radiation advantage
- •Gain advantage only between 35-50°

Type of Ground: How Important?

Height above ground = 50 feet

Height above ground = 50 feet

Height above ground = 50 feet

Height above ground = 50 feet

For identical conditions:

- A Vertically polarized antenna will have gain peaks where a Horizontally polarized antenna has gain nulls, and visa versa
- •This results from the 180° phase difference of the respective ground reflections

Vertically polarized antennas work better over salt water because of the salt (ions), not because of the water!

What Are RDF & DMF?

•Optimum transmitting and receiving antennas have different requirements:

•Transmit: want the maximum possible *signal strength* in the desired direction

•Maximum gain

•Maximum efficiency (ie, minimum losses)

•Receive: want the maximum possible *signal-to-noise-ratio (SNR)* in the desired direction

•Reciprocity: applies differently to SNR than to signal strength

Directivity Merit Figure (DMF): compares forward gain at a specific direction to the average gain in the *rear half hemisphere*Use when dominant skywave noise is not uniformly distributed
Receiving Directivity Figure (RDF): compares forward gain at a

- specific direction to the average gain in the *entire sphere*
 - •Use when dominant skywave noise is evenly distributed in all directions

What is RDF & DMF?

•Optimum transmitting and receiving antennas have different requirements:

•Transmit: want the maximum possible *signal strength* in the desired direction

•Maximum gain

•Maximum efficiency (ie, minimum losses)

•Receive: want the maximum possible *signal-to-noise-ratio(SNR)* in the desired direction

•Reciprocity: applies differently to SNR than to signal strength

Directivity Merit Figure (DMF): compares forward gain at a specific direction to the average gain in the *rear half hemisphere*Use when dominant skywave noise is not uniformly distributed
Receiving Directivity Figure (RDF): compares forward gain at a specific direction to the average gain in the *entire sphere*Use when dominant skywave noise is evenly distributed in all directions

What is RDF & DMF?

•Optimum transmitting and receiving antennas have different requirements:

•Transmit: want the maximum possible signal strength in the

- The best transmit antenna may not be the best receive antenna!
 - •Beverages are a popular choice for a <u>receive only</u> antenna for the low bands (80 & 160 M)
- Directivity Merit Figure (DMF): compares forward gain at a specific direction to the average gain in the *rear half hemisphere*Use when dominant skywave noise is not uniformly distributed
 Receiving Directivity Figure (RDF): compares forward gain at a specific direction to the average gain in the *entire sphere*Use when dominant skywave noise is evenly distributed in all directions